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Abstract

Vision-language models (VLM) bring image and textual representations close
together in a joint embedding space, which is useful for tagging and retrieval from
content stores. However such associations are not very stable in that a synonymous
textual query does not retrieve the same set of images or with a high degree of
overlap. This is due to the absence of linkages between semantically related
concepts in vision-language models. In contrast, the episodic memory store in the
brain has linkages to the semantic conceptual memory subsystem which helps in
both the formation and recall of memories. In this paper, we exploit this paradigm
to link a VLM to a semantic memory thereby producing a new semantic vision-
language model called SemCLIP. Specifically, we develop a semantic memory
model for the language of object-naming nouns reflecting their semantic similarity.
We then link a vision language model to the semantic memory model through a
semantic alignment transform. This leads to a richer and more stable understanding
of the concepts by bringing synonymous visual concepts and their associated
images closer. Both the semantic memory model and the alignment transform
can be learned from word knowledge sources thus avoiding large-scale retraining
of VLMs from real-world image-text pairs. The resulting model is shown to
outperform existing embedding models for semantic similarity and downstream
tasks of retrieval on multiple datasets.

1 Introduction
More and more enterprises are opting for content stores for managing large collections of photos,
video, audio, and documents [22, 2, 19]. In these, the content is stored as vectors, associated with
textual tags in a vision-language model (VLM) and retrieved with vectors formed from textual queries
[7, 15, 6, 29, 8]. However such associations are not very stable in that a synonymous textual query
does not retrieve the same set of images or even those with a high degree of overlap. Figure 1
illustrates this problem, showing examples of the top 5 retrieved images from sets of similar queries
prompted by “Images of X" where X is the phrase on top of each column. In Figure 1(a)-(b),
synonymous terms “hamper" and “basket" retrieve different top 5 matches. This problem is also seen
when more context is available as in the queries of Figure 1(c)-(d) where more terms are replaced by
their synonymous phrases (overcoat→coat, frock→gown) or multiple objects are queried in different
order (Figure 1(e)-(g)).
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Figure 1: Illustration of retrieval instability to synonymous phrases in vision language models
(CLIP[15]). (a)-(b) Two synonymous queries retrieving different results. (c)-(d) Multi-word queries
with synonymous replaced terms. (e)-(g) Effect of order of terms in queries.

This instability is an inherent limitation of the underlying textual embeddings used to build the
VLMs which use self-supervised method of inferring meaning similarity based on use context. As
an example, the fraction of the English language nouns that are near their synonyms in existing
textual and VLM embeddings is shown in Table 1. Here 70,000 single sense nouns from the WordNet
thesaurus [4] were projected into textual and VLM embedding spaces and their synonyms in the top
10 neighbors were noted. As can be seen from this table, there is at best a 50% overlap with their
synonyms indicating missing linkages to their semantically related concepts.

In contrast, the formation and recall of memories in the brain does utilize the linkage between episodic
and semantic memory systems. It is now widely acknowledged that these two forms of memory
interact during both encoding and retrieval[23]. Extensive behavioral, lesion, and functional imaging
studies have demonstrated the existence of a semantic memory system in brain for organizing and
interpreting episodic memories distributed throughout the cortex for representing distinct object
categories such as people, animals, and tools[18]. Neurological evidence also exists for the inter-
dependencies between semantic and episodic memory[5]. Semantic memory facilitates the acquisition
of new episodic memories, and episodic memory facilitates the addition of new information to the
semantic store. Similarly, episodic memories facilitate the retrieval of information from semantic
memory, and semantic memories are the basic material from which complex and detailed episodic
memories are constructed[5]. In this paper, we draw inspiration from this human memory paradigm

to develop a new semantically-guided vision language model called SemCLIP. In doing so, we
make three novel contributions. (1) First, we develop a new textual embedding (STE) as a semantic
memory reflecting the similarity relations between all object-naming nouns in the English language.
It is learned using multi-label supervised contrastive learning on data derived from a constrained
traversal of the WordNet thesaurus to cover all English language nouns and their semantically similar
concepts. (2) Next, we develop a semantic alignment transform to link VLM embeddings to the
semantic memory. The alignment transform is a custom-designed neural network trained to map
between textual embeddings projected in VLMS to those in semantic memory. It is learned from a
vocabulary representing the diversity of language use across different domains as captured in the
captions of multiple datasets. Image embeddings in the VLM can then be aligned using the transform
of their nearest textual embedding. (3) Finally, we provide the training dataset for the STE embedding
consisting of 114,000 linguists-curated similarity lists of words and over 600,000 pairs of synonyms
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terms derived from these similarity lists as contributions to open source, which can be valuable for
other researchers for many downstream NLP tasks.

The SemCLIP approach leads to a richer and more stable understanding of the concepts by bringing
synonymous visual concepts and their associated images closer. Furthermore, the semantic memory
model and the alignment transform can be learned from textual knowledge sources thus avoiding
large-scale retraining of VLMs from real-world image-text pairs. The resulting model is shown to
outperform existing embedding models for semantic similarity and downstream tasks of retrieval on
multiple datasets.

2 Related Work
To our knowledge, the paradigm of episodic-semantic memory interactions has not been used before
to generate vision-language models. Further, insights into the stability aspects of retrieval or the
limitations of textual embeddings in influencing VLM models haven’t been addressed in detail before.
Other prior works, however, have pointed to issues with text to image retrieval and image tagging with
CLIP with many variants of CLIP developed to address issues such as semantic inconsistencies[28],
and augmenting CLIP training with knowledge graphs to allow a better understanding of the semantics
in queries[14]. StructureCLIP [9] mentions that existing methods often perform poorly on image-
text matching tasks that require a detailed semantic understanding of the text and recommended
augmenting VLMs with scene graphs composed of objects, attributes, and relations. BLIP [13]
and its variants are unified vision-language models using a multimodal mixture of encoder-decoder
architectures trained with a language modeling loss to generate better captions given images. Sigmoid
Loss for Language-Image Pre-training (SigLIP and SigLIP2) [30] introduced a pairwise sigmoid loss
allowing the method to solely focus on the individual image-text pairs. The need for modeling coarse
and fine-grained concepts was also emphasized in a recent work [27]. In all improvements proposed
for VLM models such as CLIP, the textual embeddings were nevertheless still based on transformer
models which infer semantic similarity primarily by use context. In our approach, we achieve the
desired improvements by focusing at a different end, namely, improving the semantics in textual
embedding and using an alignment transform to project from the original CLIP model to form a new
space of semantically connected words and images.

3 Developing a semantic memory model for VLMs
Various knowledge graphs and thesaurus exist to capture different types of relationships between
word concepts such as Wordnet[4], ConceptNet[20]. In Wordnet[4], lingusits curated related terms
and defined synonyms, generalizations and specializations of concepts. Attempts have been made to
use these thesauruses in conjunction with word embeddings acquired from distributional semantics
such as Word2Vec or Glove through self-supervised learning on natural language sentences. However,
such embeddings can cover broader relationships than synonymous concepts, and may even include
antonyms.

Our approach to building a semantic memory model embedding curates the knowledge graph relations
to focus on semantic similarity. Specifically, focusing on the English language and their nouns, we
assemble an initial list of semantically similar words by traversing the Wordnet thesaurus. We then
curate the lists and uses this dataset to train a new embedding. We restricted to nouns both due to
the use context of VLMs where we were applying this idea, and also due to the cost of curation by
linguists. However, the process described below can be applied to other parts of speech.

Development of a similarity list dataset:

The initial similarity lists were obtained by directly traversing the Wordnet ontological tree gathering
synonyms (called lemmas in WordNet) as well as hypernyms (generalizations) using the WU-Palmer
similarity metric [24] which is given by:

sim(Wi,Wj) = 2 ∗ depth[lcs(Wi,Wj)]/[depth(Wi) + depth(Wj)] (1)

where where lcs(Wi,Wj) is the least common ancestor of Wi and Wj and depth(·) stands for the
depth of the concept in the ontology.

Without a constraint on the depth differential (2 in our case), and a reasonably high threshold, the
WUP similarity score alone can reveal several false positives in association and lead to undesirable
wider expansion of meanings, particularly for words closer to the root of the WordNet hierarchy. For
example, with a 4 level depth differential for a word such as ‘chair.n.05.chair’ , the WUP similarity
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to the word ‘device.n.01.device’ is high (0.823) which is not synonymous. Further, the metric does
not give a complete picture of semantic distance since domain-specific ontologies were constructed
before their planned uses in textual embeddings. Also, due to the nature of the English language,
the shortest-path distances between nodes or ontological depth differences do not have a uniform
implication of similarity across words. For example, synsets ‘car.n.01’ and ‘van.n.01’ are 16 apart in
shortest path length, while ‘car.n.01’ and ‘automobile.n.01’ are only 1 apart. Conversely, terms that
are not so close in meaning could also end up having a high score. For example, similarity metrics
using depth differences can give similar scores for vastly different meaning words, e.g. (dog.n.01,
giant panda.n.01) and (dog.n.01, hound.n.01) pairs have about the same WUP score of 0.86. .

Therefore, to normalize the notion of similarity, the initial lists produced by the automatic algorithm
were curated by domain specialists. For WordNet, we used a team of 3 linguists from a nearby
university to examine the similarity lists so that relationships other than similarity in meaning and
sense were removed. Each linguists produced their own curated similarity lists. Triple consensus
process was used to filter the lists so that those terms identified by all 3 linguists were retained in
the final similarity list per anchor words. The original scores returned by the WUP metric were still
retained for these pairs so that the linguists only filtered the irrelevant words from the lists but did
not alter the WUP scores. For the WordNet ontology, we were able to address all valid nouns and
their synonyms resulting in over 140,000 words. Note that this vocabulary already exceeds the token
vocabulary of most transformer models. The whole curation process took over 1 year to complete.

Developing the STE Embedding:

We now develop a new textual embedding designed to capture the similarity relations reflected in
these similarity lists such that only the word embeddings within a similarity list have high cosine
similarity. Specifically, adopting the lemma notation of WordNet, we can characterize a word Wi as:

Wi =< wi, pi, si, li > (2)
where wi is the multi-term word, li ∈ {Synonym(wi)} is a synonym, and pi ∈ {n, a, v, r, s} which
stand for noun, adjective, verb, adverb, and adjective satellite respectively. Finally, si stands for the
sense of the word and is a number from 1 to n.

Let Si be the set of semantically similar words for each anchor word Wi as provided by the curated
similarity lists. The semantic memory model uses these similarity lists to derive a neural encoding
such that all words that mean the same or are semantically similar are pulled closer in the embedding.
Thus pairs of anchor and target words from similarity lists are taken as positive examples, and all
other pairings represent negative examples for the anchor class.

Specifically, given a fully-specified 4-tuple anchor word Wi, we encode it by a 1-hot encoding
Oi ∈ {0, 1}|V |, s.t.

∑|V |
i=1 Oij = 1 as an input to the network where V is the vocabulary. As

a supervision label, we form a label vector in the real number space Yi = R|V |, s.t. Yij =
sim(Wi,Wj) iff Wj ∈ Si and 0 otherwise. Here sim(Wi,Wj) is the similarity score returned from
the similarity list generation. Thus each similarity list is characterized by a unique pattern label
vector.

Architecture-wise, we design the semantic memory model as a unimodal, multi-label supervised
contrastively-learned encoder. Specifically, the semantic memory model consists of an embedding
layer to handle the large one hot vectors, a dense fully connected layer with ReLU activation for an
encoder, and a decoder/projection network as another fully connected layer with ReLU activation,
which is discarded after the learning, retaining only the encoder. The cosine similarity matrix
between the encodings of the words is non-diagonal as shown in Figure 2c with the cells colored
in green indicating the members of the similarity list as positive examples and the red colored
cells representing the negative examples. In this case, for the candidate word "basket", the positive
examples are "hamper, kreel, pannier" while "window, and table" are negative examples.

Specifically, the similarity between an anchor word Wi at index i in the vocabulary V , and a candidate
word Wj ∈ Si be captured by the contrastive loss per similarity list as:

ℓcontrast(Si) = −
∑

Wj∈Si

log
exp(zi · zj/τ)∑

a∈V

exp(zi · za/τ)
(3)

Here zi is the projected vector for word Wi and zj is the projected vector similarly for Wj ∈ Si.
Finally, za is the projected vector for any word Wa either inside or outside the similarity list (i.e.

4



ideally the entire vocabulary). In general, since the similarity lists are small in size, the number of
negative samples to differentiate them need not take up the entire vocabulary V , so smaller batch
sizes could be used. τ is the temperature to weigh the contribution from similar vectors. Also, since
there are multiple such similarity lists, one for each vocabulary term, we can train them in sequential

fashion through batching using a cumulative contrastive loss as Lcontrast =
|V|∑
j

ℓcontrast(Sj).

This type of non-diagonal similarity matrix formulation is unlike other self-supervised contrastively
learned encoders such as CLIP[16]. Instead of a single positive image-text pair, we have several
semantically similar words paired with an anchor word as positive examples. Further, we have
additional supervision coming from the label given to a similarity list per word making it closer to
supervised contrastive learning [10] but with multiple positive examples.

Implementation Details: Overall, the designed network architecture had the following parameters:
input and output vector sizes= 142, 989, for various encoding size = 300, 1024, 2048, 4096, and
temperature= 0.05 in the loss function. We used a batch size of 800 and trained over a maximum of
10 epochs or until the network error convergence was reached. We used the Adam optimizer for fast
convergence with the learning rate as 0.001. Two NVIDIA P100 GPUs with 16 GB were used for
training and training took 5 hours. The network overall had 43,666,800 parameters (for encoding size
of 300) and scaled accordingly for higher size encodings.

4 Developing the semantic alignment transform
The semantic alignment transform creates a linkage between the VLM and the semantic memory
using the textual data that can be projected in both embedding spaces. Once the language concepts
have been aligned, the image embeddings can utilize the transform of their nearest language concept
to be also aligned with the semantic memory concepts, so that the textual phrases and image pairings
of synonymous words are close to each other.

Modeling these desired transformations more formally, let fi(·) : Ximage→Rdi be the image encoder
and ft(·) : Xtext→Rdt be the text encoder of a VLM model. Given a batch of Nimages, IN =
{I1, I2, ..., IN} and Ncaptions, TN = {T1, T2, ..., TN}, we can project them into a common vector
space C : Rd, Ct ∈ Rd of the VLM. In our notation, Ci, Ct denote the vector representation in the
VLM space for an image I , and a linguistic caption T , respectively. Consider two textual queries q1
and q2 which are synonymous of a query word q (for e.g. “kreel", and “hamper" to “basket"). Let
their projected vectors in the VLM space be Cq1 , Cq2 , Cq and their nearest images be denoted by the
vectors Ciq1 and Ciq2 , respectively. Our goal is to design a semantic alignment transform C

′
such

that:
|C

′

j − C
′

k| < δ,where the indexes j, k ∈ {q, q1, q2, iq1, iq2} (4)

and δ is a small neighborhood so that both images corresponding to the vectors Ciq1 and Ciq2 are
pulled up to either query q1 or q2.

Given a word Wi projected in the original VLM space, its encoding in the semantic memory model
can be denoted by STE(Wi) such that

|STE(Wj)− STE(Wk)| < min(γWj
, γWk

),Wk ∈ Sj (5)

and δ where Wj ,Wk are words related by synonym relationship as defined in Wordnet, and Sj is the
synonym list of word Wj and STE(Wj) is the semantic embedding of word Wj . γWj

is the distance
over which semantic similarity holds for Wj . Note that the distance γWj

is a function of Wj , since
some words have more synonyms than others.

The semantic alignment transform (Γt(·),Γi(·)) now projects the textual and image embeddings from
VLM space such that

C
′

t = Γt(Ct) and C
′

i = Γi(Ci) (6)

where Γi(·) : Rdi→Rd and Γt(·) : Rdt→Rd, where Rd is the dimension of the STE space.

The alignment transform Γt(·) for text can be learned separately by mapping the embeddings of all
words in a language from VLM space to the semantic memory space. However, we cannot train
separately for Γi(·) because the STE embedding is only defined for text. To ensure that the image
embeddings of synonymous words in VLM space are close to the synonymous words and their
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(a) (b) (c)

Figure 2: Architecture of SemCLIP demonstrating the various stages of creating the joint text-image embedding.

associated images in the STE space as well, we induce a transformation based on their nearest textual
neighbors. Specifically, we can express Γi as

Γi(Ci) = Γt(Cti) such that Cti = argmin
t′

d(Ci, Ct′) (7)

where Cti is the nearest text to an image vector in the original VLM space in terms of distance d(.):
the cosine distance between the image and text vectors. This results in the image vectors aligning
directly on top of the textual embedding vectors in the STE space.

Learning the alignment transform:

To train the alignment transform, we form a ground truth dataset of pairs of embeddings derived from
a VLM model and the STE model for candidate words or phrases. While this method could be applied
to any VLM model, in our work, we derived this mapping for the original CLIP model [16]. Unlike
the STE embedding which was derived from WordNet, the alignment mapping used additionally, a
much larger vocabulary of nearly 800,000 captions accumulated across datasets such as MS-COCO,
Visual Genome and other collections.

For long captions, the correspondence was derived from the composed words in the caption and
forming their average embeddings. For out-of-vocabulary words, we found the nearest match to their
lexical variants in the vocabulary using an SBERT[17] encoding of the words/phrases. Since the nouns
in the captions could be associated with multiple senses, an available word sense disambiguation
(WSD) tool, ESC [1], was employed to resolve the sense of the constituent nouns before making the
correspondence.

The alignment transform Γt(·) is a three layered Multi-layered Perceptron (MLP) with input size
512, output size 300 and intermediate layer width 4096 as shown in Figure 2. We use Layer Norm as
the activation function. The network is trained using a Mean Squared Error (MSE) loss between the
neural network outputs and the ground truth semantic embeddings. Equation 8 below captures the
network details.

Transform: Γt(·) = FC3(Φrelu(FC2(Φrelu(FC1((·))))) Loss: L = ||Γt(Ct)−C
′

t||
2

2 (8)

To train the network, we use the ADAM optimizer with weight regularization (AdamW) and initial
learning rate as 0.001. We train for a total of 200 epochs and use a batch size of 512. Along with the
decrease in training loss, we calculate the retrieval errors (i.e. training fit using a nearest neighbors
matching) after projection and observe less than 4 percent error in recovering the target semantic
embeddings post-projection after training. Once Γt(·) is learned, the images were mapped using their
nearest text embedding as described above.

By combining a VLM Model, the alignment transform, and the semantic memory model, the overall
end-to-end architecture of SemCLIP is shown in Figure 2.

Using SemCLIP for content stores:
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Table 1: Illustration of synonym recognition across text embeddings.
Embedding # Queries Synonyms in Top10 %age synonyms covered
CLIP [15] 71895 28070 49.27%
SBERT [17] 71895 37888 52.7%
Ours 71895 67309 87.7%

Using SemCLIP embedding, we can address the problem of semantic stability of retrieval in content
stores as follows. All captions used to tag images along with the base vocabulary of the English
language nouns are first projected into the SemCLIP space. During ingestion, the incoming images
into the content store are projected into the new SemCLIP space using the transform of their nearest
text embedding as given in Equation 7. Specifically, an incoming image file I is mapped to a vector
C

′

i = Γt(Cti) where ti = argmint′ d(Ci, Ct′) where d is the cosine distance between the image and
text vectors in the original CLIP space C as explained in Section 4. During retrieval, a new query Q
is projected into SemCLIP directly through the semantic text embedding of its composed entities as
C

′

q . The nearest images to Q are then retrieved within the neighborhood of C
′

q using cosine similarity
in the SemCLIP space.

5 Results
The SemCLIP model and its constituent embeddings were evaluated for semantic stability of image
retrieval on a variety of datasets as well as for many relevant downstream tasks such as image-to-text,
text-to-image retrieval, and text-to-text retrieval.

Datasets: We compare the performance of STE embedding on 13 benchmark datasets as listed in
Table 2. All datasets contain pairs of terms that are related in multiple ways ranging from synonyms
to antonyms, to part-of relations and have been used in previous evaluations. For the joint embedding,
we evaluated the performance of SemCLIP on 5 datasets, namely, Visual Genome [11], SUN [26],
CUB [21], AWA2 [25], MS-COCO, and Flicker30k. In each case, we retained all the labels and
the test image partition provided for these datasets. Each of the labels was processed using Spacy
to extract all noun entities. We then resolved their sense to give a 4-part notation for the nouns as
described earlier. The details of these datasets are described in Table 4 and Table 3.

Comparison methods: The semantic text embedding was compared to 4 popular word embedding
methods including, Word2Vec, Glove, BERT [3], and Path2Vec [12]. Since most image-text em-
beddings are variants of CLIP [15], our comparisons for SemCLIP included all popular variants,
namely, Open AI’s original CLIP [15], OpenCLIP [15], NegCLIP [28], BLIP [13] and SigLIP[30].
In addition, we conducted ablation studies creating a variant of CLIP called PosCLIP by fine-tuning
CLIP directly with synonymous captions.

Recognition of synonyms: Since the STE model was trained with synonym similarity lists, we
expect a high overlap with synonyms in its topK retrieval in comparison to other textual and VLM
embeddings. To record this, we repeated the experiment described in Section 4 using SemCLIP
embedding and the result is shown as the last row in Table 1 indicating nearly a doubling of
performance over popular existing embeddings. Qualitatively, we found that due to the supervision

Table 2: Illustration of comparative performance of semantic textual embeddings (STE) on benchmark
datasets. The last column shows the STE result for the similar subet.

Datasets Original
Word #

WordNet
Filtered Word2Vec Glove BERT Path2Vec STE STE

EM_SIMLEX_SYNS 297 297 0.285 0.240 0.145 0.301 0.265 0.570
EN-MC-30 30 30 0.789 0.702 0.410 0.782 0.650 0.650
EN-MEN-TR-3k 3000 2657 0.776 0.743 0.310 0.366 0.257 0.780
EN-MTurk-287 287 243 0.767 0.705 0.435 0.317 0.300 0.810
EN-MTurk-771 771 771 0.671 0.649 0.335 0.404 0.466 0.760
EN-RG-65 65 64 0.761 0.770 0.446 0.723 0.640 0.820
EN-RW-STANFORD 2034 910 0.492 0.341 0.226 0.194 0.217 0.590
EN-SIMLEX 666 666 0.452 0.397 0.233 0.505 0.398 0.670
EN-WS-353-REL 252 248 0.626 0.578 0.159 0.136 0 0
EN-WS-353-SIM 203 201 0.774 0.659 0.388 0.599 0.820 0.820
EN-YP-130 130 43 0.542 0.545 0.326 0.029 0.426 0.660
EW-WS-353-Syns 99 98 0.507 0.507 0.366 0.616 0.655 0.655
EN-WS-353-ALL 352 348 0.694 0.607 0.256 0.406 0.303 0.720
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Table 3: Results of average text-image retrieval overlap when querying using synonyms of nouns in
the respective datasets. For each query, we use ten synonyms to estimate the image retrieval overlap

Dataset Images/Queries Method Overlap@1 Overlap@5 Overlap@10 Overlap@50

Visual
Genome 7794 / 14513

SemCLIP 0.551 0.532 0.517 0.523
CLIP 0.119 0.056 0.038 0.026

OpenCLIP 0.129 0.055 0.040 0.025
BLIP 0.119 0.056 0.037 0.024

NegCLIP 0.109 0.063 0.038 0.024

CUB 11788 / 200

SemCLIP 0.812 0.783 0.732 0.715
CLIP 0.118 0.072 0.062 0.053

OpenCLIP 0.149 0.079 0.062 0.053
BLIP 0.181 0.084 0.066 0.053

NegCLIP 0.119 0.078 0.066 0.055

SUN 16657 / 567

SemCLIP 0.554 0.531 0.523 0.511
CLIP 0.092 0.048 0.034 0.025

OpenCLIP 0.070 0.039 0.028 0.021
BLIP 0.091 0.05 0.035 0.025

NegCLIP 0.095 0.045 0.032 0.023

AWA2 6985 / 10

SemCLIP 0.751 0.723 0.702 0.715
CLIP 0.086 0.051 0.038 0.028

OpenCLIP 0.139 0.067 0.046 0.032
BLIP 0.139 0.057 0.039 0.028

NegCLIP 0.101 0.046 0.034 0.025

provided by the similarity lists, the neighborhoods in the STE embedding consist of only synonymous
or semantically related terms unlike other encodings like Word2Vec. For more quantitative results,
we evaluated the performance of STE embedding on 13 textual benchmarks shown in Table 2. The
resulting performance using the Spearman correlation coefficient to see the agreement of the similarity
ranked lists produced for each word in comparison to human ranked lists, is shown in that table. Our
method was expected to perform worse on the datasets where the relations are antonyms or other
forms of relations besides meaning similarity, but should perform better when limited to the meaning-
wise similar pairs in these benchmark datasets. As seen in Table 2, it significantly outperforms other
embeddings in the case of the EN-WS-353-SIM dataset which focuses on similarity relations. If
we restrict the analysis to only the similar words in all datasets, our method outperforms all other
methods as shown in the last column. Finally, for datasets such as EN-WS-353-REL which capture
antonyms and other relationships besides synonyms, our performance is the least, which is also a
good result indicating it is able to focus on similarity relations only. Note that the values in Table 2
are Spearman correlation coefficient where the values above 0.7 indicate strong correlation which our
method achieves for most datasets.

Evaluating stability in retrieval: We evaluated the stability of retrieval by measuring the overlap in
the image lists returned in response to queries and their synonym variants. Specifically, we extracted
nouns from each of the captions covered by the test partitions of the respective datasets. All text to
image retrieval used a common prompt of “A photo of " before each noun flagged in a caption. We
then recorded the pairwise overlap of the top K lists returned for a caption with the top K lists of
images returned from their synonym replacements. The overlap was averaged across the synonym
replacements to serve as a measure of the stability of retrieval. The experiments were performed for
all CLIP variants. The result is shown in Table 3. As can be seen, by projecting the synonymous
phrases to the SemCLIP embedding, the list of images returned show far higher overlap in SemCLIP
in comparison to other CLIP variants.

Due to the projection of synonymous phrases and their associated embedding close together, we
expect an increase in the precision and recall for general text-to-image retrieval as well. We evaluated
this using the popular measures of NDCG and mean average precision (MAP). To keep the comparison
fair, all ground truth labels of images were augmented with their synonym equivalents. For example,
images labeled with ‘clock frame’ were also augmented with the label ‘frame/clock’ from the same
caption set as both these labels share the same entities and would be represented by the same average
vector in SemCLIP space. For each dataset, our method achieves the highest NDCG@K as well as
MAP across various datasets as shown in Table 4 (under the columns "t2i") except for AWA2 which
had the fewest labels.
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Table 4: Comparisons of text-to-image (t2i) and image-to-text (i2t) retrieval performance with
different models.

Dataset Images / Labels Model t2i: NDCG / mAP / Recall (@10) i2t: NDCG / mAP / Recall (@10)

Visual
Genome 7794 / 14513

SemCLIP 0.192 / 0.172 0.254 / 0.185
CLIP 0.053 / 0.060 / 0.065 0.050 / 0.129 / 0.028

OpenCLIP 0.066 / 0.075 / 0.081 0.061 / 0.159 / 0.035
BLIP 0.072 / 0.081 / 0.088 0.069 / 0.167 / 0.039

NegCLIP 0.063 / 0.072 / 0.077 0.060 / 0.150 / 0.035
PosCLIP 0.074 / 0.084 / 0.091 0.060 / 0.146 / 0.034

CUB 11788 / 200

SemCLIP 0.721 / 0.845 0.891 / 0.812
CLIP 0.513 / 0.621 / 0.084 0.619 / 0.554 / 0.826

OpenCLIP 0.669 / 0.744 / 0.111 0.777 / 0.726 / 0.935
BLIP 0.204 / 0.341 / 0.033 0.326 / 0.260 / 0.543

NegCLIP 0.406 / 0.535 / 0.065 0.472 / 0.403 / 0.694
PosCLIP 0.488 / 0.580 / 0.080 0.553 / 0.479 / 0.788

SUN 16657 / 567

SemCLIP 0.686 / 0.712 0.810 / 0.671
CLIP 0.414 / 0.562 / 0.191 0.458 / 0.415 / 0.595

OpenCLIP 0.549 / 0.664 / 0.260 0.514 / 0.476 / 0.634
BLIP 0.413 / 0.535 / 0.194 0.426 / 0.384 / 0.557

NegCLIP 0.429 / 0.553 / 0.201 0.425 / 0.380 / 0.567
PosCLIP 0.463 / 0.602 / 0.214 0.445 / 0.399 / 0.589

AWA2 6985 / 10

SemCLIP 0.967 / 0.987 0.995 / 0.989
CLIP 0.993 / 0.999 / 0.016 0.992 / 0.989 / 1.000

OpenCLIP 1.000 / 1.000 / 0.016 0.994 / 0.991 / 1.000
BLIP 1.000 / 1.000 / 0.016 0.991 / 0.988 / 1.000

NegCLIP 1.000 / 1.000 / 0.016 0.987 / 0.982 / 1.000
PosCLIP 1.000 / 1.000 / 0.016 0.983 / 0.977 / 1.000

COCO 5000 / 80

SemCLIP 0.940 / 0.91 0.895 / 0.923
CLIP 0.810 / 0.869 / 0.081 0.706 / 0.771 / 0.745

OpenCLIP 0.866 / 0.926 / 0.087 0.756 / 0.788 / 0.799
BLIP 0.897 / 0.942 / 0.089 0.774 / 0.852 / 0.781

NegCLIP 0.834 / 0.892 / 0.083 0.766 / 0.797 / 0.808
PosCLIP 0.919 / 0.946 / 0.088 0.807 / 0.834 / 0.843

Flickr30k 31014 / 158391

SemCLIP 0.571 / 0.523 0.580 / 0.572
CLIP 0.354 / 0.306 / 0.510 0.314 / 0.430 / 0.320

OpenCLIP 0.427 / 0.377 / 0.588 0.376 / 0.489 / 0.382
BLIP 0.562 / 0.510 / 0.725 0.475 / 0.587 / 0.480

NegCLIP 0.425 / 0.373 / 0.591 0.354 / 0.465 / 0.360
PosCLIP 0.323 / 0.279 / 0.468 0.273 / 0.367 / 0.283

Evaluating image-to-text retrieval: The image-to-text retrieval experiments results also showed
similar performance as shown in Table 4 under the columns "i2t". Note that when there are large
number of captions (visual genome, Flickr30k), our method’s performance is best seen due to the
capturing of semantics of multiple noun phrases in the average vector embeddings used in the
transformation. The COCO and Flickr30K labels were not used for training the alignment mapping
of SemCLIP.

Performance on classification: We evaluated SemCLIP also for the standard task of classification
using the predicted labels. On the ImageNet classification, our zero shot classification accuracy for
SemCLIP was at 88.3% in comparison to CLIP at 84.2%.

Ablation studies: To explore the value of using the semantic alignment to a semantic memory model,
we conducted an ablation study in which we fine-tuned CLIP on the visual genome dataset by directly
providing the synonymous captions as positive examples and using binary cross-entropy loss to cover
the multiple positive examples. The performance of the resulting model called POSCLIP can be
seen in Table 4 which are not as impressive as doing an explicit transformation of the terms into the
SemCLIP space, indicating the lack of similarity in the original textual embeddings of synonymous
terms.

6 Conclusions
In this paper, we offered new approach to semantically enriching VLM models by drawing inspiration
from the linkages of episodic and semantic memory in the brain. A simple model of semantic memory
was developed covering all nouns in the English language. A linkage transform was developed to map
from VLM space to semantic memory space. The resulting VLM model was shown to outperform on
multiple tasks against multiple datasets. Performance variation was still seen across datasets due to
their incomplete ground truth labeling, but SemCLIP was found to be better for larger vocabularies
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due to the better handling of synonymous terms. Future work will extend this paradigm to cover other
parts of speech, and better address out-of-vocabulary words and word-sense disambiguation issues.
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