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Abstract

Automated radiology report generators are being increasingly explored in clini-
cal workflow pilots, particularly for chest X-ray imaging. However, their factual
correctness with respect to the description of the findings has often been less than
accurate, making their adoption slow and requiring detailed verification by clini-
cal experts. In this paper, we propose an automatic report correction method that
uses an image-driven fact-checking model to detect identity and location errors
of findings in generative AI reports. Prompts are then generated to correct the
sentences by selectively modifying them using a large language model. We show
that this method of report correction, on the average, improves the report quality
between 17-30% across various SOTA report generators over multi-institutional
chest X-ray datasets.

1 Introduction

With the rise in generative AI, a transformative shift is being seen in clinical workflows affecting
diagnostic decision support, and personalized treatment planning. Radiology practices, in particular,
are piloting automated radiology report generator tools for expediting and streamlining structured
report generation[28]. Such reporting tools have progressed the most in chest X-ray radiology thanks
to the availability of relatively large datasets such as MIMIC[8] and CheXpert[6] that come with
their companion reports for training vision-language generative (VLM) models[1, 4, 11]. However,
the results with pilots are revealing a predominance of hallucinations and factual errors which have
hampered their adoption in clinical workflows. While these tools continue to be improved, there
will still be a need for a fact-checking and correction model that can work with deployed report
generators at inference time as a last checkpoint before the information being presented to clinicians.

In this paper, we present a report correction model with a built-in discriminative image-guided fact-
checking (FC) model that first detects and localizes the errors in the report. The error analysis
along with the original sentences is used to generate a corrective prompt to an LLM which then
produces the corrected sentence. We show that this method of report correction improves the report
quality of report generators between between 17-30% across various SOTA report generators over
multi-institutional chest X-ray datasets.

Our paper makes 3 novel contributions. First we generate and contribute to open source, a synthetic
dataset called RadCheck consisting of 24 million pairs of image and textual report sentences to
represent a large spectrum of correct and incorrect finding descriptions in report generators. Next,
we use this dataset to develop and train a novel multi-modal supervised contrastive regression neural
network as a fact-checking (FC) model. Finally, the detected errors by the FC model are corrected by
a large language model using instructional prompts generated automatically for the incorrect report
sentences. Figure 1d illustrates report correction by our method for an automatically generated
report in Figure 1 using both the chest X-ray image (Figure 1a) and structured finding descriptions
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Figure 1: Illustration of report correction. (a) Chest X-ray image. (b) A section of its ground truth
radiology report. (c) Automatically generated report by XrayGPT[30]. (c) Corrected report by our
method. The sentence with error in finding is colored orange in (c) and corrected sentence is shown
in green in (d). Here the erroneous finding of ”pleural effusion” is removed while still retaining
location information for the remaining finding in the sentence, i.e. atelectasis.

Figure 2: Illustration of the report correction workflow using a fact-checking model-guided LLM.

derived from the automated report in Figure 1c. The result is an improved match to the ground truth
report of Figure 1b.

2 Related work

While there is considerable work in chest x-ray radiology report generation literature[1, 2, 3, 13,
19, 24, 25, 28], papers focusing on detecting and correcting errors in radiology report generation
have only recently been emerging for inference-time fact-checking[16]. However, the correction
approach has been to simply remove the entire sentence. Standard approaches of hallucination
reduction through direct policy optimization (DPO)[5, 21, 23, 39] or proximal policy optimiza-
tion (PPO)[38, 40] are not applicable at clinical inference time. Other inference-time fact-checking
methods that consult external knowledge sources cannot be used for patient-specific radiology re-
ports either. [12, 21, 27]. Even powerful LLM-as-a-judge models are not often trained for such
domain and patient-specific applications. Thus, to our knowledge, combining fact-checking models
with large language models for radiology report correction, has not been previously attempted.

3 Report Correction Method

Our report correction approach addresses the most common types of errors made in radiology re-
ports, namely, false predictions, omissions, and incorrect finding location reporting[26, 36]. The
overall report correction process is illustrated in Figure 2. A report produced by an automated report
generator for chest X-rays is pre-processed to extract sentences, and findings from sentences. The
extracted findings are structured as fine-grained label (FFL) patterns[28], documenting the presence
or absence of a finding and any associated anatomical location information. A finding localization
algorithm is then used to extract an indicated anatomical image location li =< xi, yi, wi, hi > for
the finding from the report. A fact-checking model uses the image I , and the finding pattern Fi to
predict an expected location lp =< xp, yp, wp, hp > and a veracity label Ep for Fi. The spatial
overlap error between the predicted and indicated location along with the veracity indicator Ep is
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No Sentence FFL
1. FINDINGS: The heart appears

mildly enlarged.
anatomical finding|yes|enlarged cardiac silhouette|heart

2. Cardiac size is slightly enlarged al-
lowing for limitations of this AP
view.

anatomical finding|yes|enlarged cardiac silhouette|heart

3. Pleural vasculature is not engorged
and the patient has moderate pul-
monary edema on the right.

anatomicalfinding|no|vascular congestion|lung

anatomicalfinding|yes|pumonary edema|lung|right

Table 1: Illustration of structured finding extraction using the FFL pattern extraction algorithm[28].

used to generate distinct prompts for different actions in the error analysis module. These are sub-
mitted to a large language model (LLM) to perform the sentence correction. The corrected sentences
along with valid sentences from the report are combined in order to assemble the overall corrected
report.

3.1 Pre-processing

The pre-processing involves parsing of sentences from reports and the extraction of findings. Specif-
ically, we leverage a vocabulary-driven finding pattern (FFL) extraction algorithm that uses a chest
X-ray lexicon to find vocabulary terms and their variants within parsed sentences[28]. We chose
the FFL extraction algorithm as it could detect the largest number of findings (78 core findings and
101,088 distinct FFL patterns [33]) with over 97% accuracy[28]. Using this algorithm, a finding Fi

is described in a structured way as:
Fi = Ti|Ni|Ci|Ai|Li (1)

where Ti is the finding type, Ni = yes|no indicates a present or absent finding respectively, Ci is the
normalized core finding name, Ai is the anatomical location, Li reflects laterality of the core finding
Ci. In this paper, we use Fi to refer to the full FFL pattern as in Equation 1 as well its shortened form
Ni|Ci as appropriate. The FFL pattern is a normalized way to describe the finding using standard
vocabulary as shown for sentence 1 and 2 in Table 1 for cardiomegaly. Missing anatomical details
can also be filled in based on clinical knowledge from a chest X-ray lexicon [34] for the location of
a finding as seen in the last sentence in Table 1.

To localize a finding, we first use an anatomical localization algorithm that locates all distinct
anatomical regions known to contain chest X-ray findings through bounding boxes [34]. This al-
gorithm detects the largest number of anatomical regions (36 regions) with average localization
precision and recall of 0.896 and 0.881 respectively[34] and was used to generated the ChestIm-
aGenome dataset for MIMIC images[8]. The findings are then localized by merging the bounding
boxes of the relevant anatomical regions covered by the finding as given by the clinical knowledge in
the chest X-ray lexicon[34]. Although this method can over or underestimate the precise boundary
of a finding, since locations are only roughly described in radiology reports, this is sufficient for
report verification. We rely on clinician-corrected bounding box locations, however, during training
the fact-checking model to enable higher precision in localization.

3.2 Generation of synthetic dataset

To train a fact-checking model in a manner agnostic to report generators, instances of report errors
made by various automated report generators on large image datasets would be needed as ground
truth. Due to the limited availability of clinical expertise for assessing such errors for ground truth
generation, as well as to ensure coverage of all current and future automated report generators, we
took a different approach to producing the training data for our model. Specifically, we assembled
an original dataset of chest X-ray images with their associated clinician-produced radiology reports.
We then derived a synthetic dataset of correct and incorrect pairings of images with findings by
mixing and matching findings of one image with the another allowing us to create a very large
synthetic dataset of over 24 million pairs spanning potentially all major error combinations made by
report generators in an efficient and independent manner.
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Specifically, let < I,R > be a sample set of ground truth image-report pairs in a publicly available
dataset D. Let F = {Fj} be the total list of possible findings across chest X-ray datasets. Given
a real finding fij at location lij for a sample image-report pair Di, we create 3 variants to reflect
(a) reversal of polarity (b) relocation of the finding (c) and substitution with appropriate relocation
as FLiincorrect = {< flij , f lik, f lmn >}, where flij is the reversed finding, flik is finding fij
relocated to a new position lk ∈ Lj , and flmj is obtained by substituting finding fj with fm ̸∈ Fi

at location ln ∈ Lm.

Randomly selecting findings and choosing to vary their locations can create a large variety of com-
binations. However, to cover both physically plausible (correct/real) as well as impossible combi-
nations (incorrect/fake), we mine the finding statistics in ground truth reports to derive conditional
probabilities of co-occurrence of findings. We then adopt a Monte Carlo sampling strategy to intro-
duce randomness in the synthesis process so that those findings that are likely to co-occur frequently
do not bias the generation. As a result of this sampling, each data item can be described by the
tuple < I, F,< x, y, w, h,E >> where I is the image, F is an FFL pattern, < x, y, w, h > is the
bounding box assigned to the finding F and E is a binary label indicating correct/incorrect nature
of the findings with E = 1 denoting a correct finding.

3.3 Designing the fact-checking model

Our fact-checking model is a multi-modal, multi-label supervised contrastive regression network
consisting of a feature learner and a regressor as shown in Figure 3. The feature learner is a con-
trastive encoder that learns a joint representation of images and short FFL patterns. The regressor
learns the association of the combined image-text features with the locations of the findings in the
image. Throughout, a supervision label of correct or incorrect association E guides the learning.

Feature learning

A natural choice for a multimodal contrastive encoder is a vision language model such as CLIP[22].
However, unlike CLIP, instead of a single positive image-text pair, we have multiple such pairs
corresponding to the findings reported as present or absent in the image. Further, all other pairings
are not considered negative as in CLIP since some findings may not even be reported (i.e. are
unknown or not important enough to report). Unlike the self-supervision provided by the pairs in
CLIP, we have additional supervision coming from the E label indicating the correctness of the
finding and location. This results in a non-diagonal similarity matrix for our feature encoder as
shown in Figure 3. To train this similarity matrix, we define a multi-label cross-modal supervised
contrastive loss function as:

LSupCi =
−1

|Ficorrect|
∑

fij∈Ficorrect

log
esifij/τ∑

aik∈Fiincorrect
esiaik

/τ
(2)

where sifij = zi ·zfij is the pairwise cosine similarity between image and textual embedding vectors
from the correct findings fij ∈ Ficorrect, and siaik

= zi · zaik
is with the incorrect findings where

aik ∈ Fiincorrect. The overall loss is obtained by averaging across all the samples in the batch. Here
τ is the temperature parameter. Note that unlike the usual supervised contrastive loss function[10],
the summation in the denominator is only over the incorrect findings instead of all negative pairs,
thus resulting in a new loss function.

Regression network

The joint embedding space of the feature encoder is not directly suitable for separating the correct
from incorrect finding-image associations as the cosine similarity values between their encodings
overlap completely. Instead, we found that by forming a high-dimensional feature space by concate-
nating the contrastively learned image and text embeddings results in better separability between
correct and incorrect pairings. The regression classifier, therefore, is a neural network that takes
the projected joint embeddings Tijcorrect = [zi|zfij ] of image Ii paired with correct finding label
fij ∈ Ficorrect or incorrect labels Tijincorrect = [zi|zaik

] where aik ∈ Fiincorrect and the cor-
responding supervision label Yg =< Y1g, Y2g > where Y1g =< x, y, w, h > is the location and
Y2g = E = 1 for the real finding and 0 otherwise. Using Yp =< Y1p, Y2p > as the prediction
from the network, we can express the regression loss per sample as a combination of an MSE loss
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Figure 3: Illustrative of the multimodal supervised contrastive regression network. Here the feature
extractor is a supervised contrastive encoder training with a non-diagonal similarity matrix. The
classification network is a regressor on both the location and veracity of the label using the combined
image and textual input from the finding pattern.

measuring the spatial overlap in location and a binary cross-entropy loss for the correctness of the
predicted finding, reflecting the dual attributes being optimized as:

LRegi = |Y1p − Y1g|2︸ ︷︷ ︸
LSpatiali

− [Y2glog(Y2p) + (1− Y2g)log(1− Y2p)]︸ ︷︷ ︸
LIdentityi

(3)

Implementing the FC Model

Bringing these two networks together, the fact-checking model was trained as a single end-to-end
learning network as shown in Figure 3. The encoder model was based on a chest X-ray pre-trained
CLIP and reused its image and text encoders[24]. The joint embedding projection layers of this
model (768x512 for image and 512x512 for text) were, however, fresh-trained using the new su-
pervised contrastive loss mentioned in Equation 2. The regression network (657,413 parameters)
consists of two linear layers, two drop out layers followed by a RELU for the intermediate layers
and separate sigmoidal functions for producing the output regression vectors as shown in Figure 3.
The losses defined in Equations 2 and 3 were applied at the respective heads with the backpropaga-
tion for the regression loss going back into the contrastive learning part as well. The total trainable
parameters were 151,277,313 parameters making it possible to build this model on an NVIDIA
A100 GPU with 40GB of memory. The network was trained for 100 epochs using the AdamW
optimizer with a batch size of 32. The cosine annealing learning rate scheduler was used with the
maximum learning rate of 1e-5 and 50 steps for warm up.

3.4 Report correction

To correct the reports, the output of the FC model is analyzed. Given an indicated finding Fi ex-
tracted from the automated report associated with a given image I at inference time, it can predict
a location lp =< xp, yp, wp, hp, Ep >. Using the finding localization algorithm of Section 3.1, we
can also derive the finding’s indicated location as li =< xi, yi, wi, hi >. The corrective action rules
are formed both using the predicted veracity indicator Ep and the spatial overlap between li and lp
measured through IOU as

IOUpi = 1− IOUpi = 1− |lp ∩ li|
|lp ∪ li|

(4)

Given the possible values of lp, Ep, Fi, IOUpi, there could be a large number of error cases to
consider. To simplify the analysis, we quantized these values into ranges. For Fi we consider two
major classes of findings, namely, presence findings and absence findings as the location indicators
are very different for these. The absence findings are associated with the location coordinates <
0, 0, 0, 0 > in both li and lp if predicted correctly. Thus the values of lp could be categorized into
two categories if lp ≈ 0 =< 0, 0, 0, 0 > or > 0. The veracity label Ep is already a binary indicator.
Similarly, IOUpi can be thresholded by a parameter Γ to indicate a small difference in the spatial
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Table 2: Illustration of error analysis using the output of the FC model. The error interpretation and
suggested corrective action for a finding Fi mentioned in the sentence Si are shown in the table.

lp Ep Fp IOUpi Interpretation Corrective Action Prompt

≈
0

1 Absence <=
Γ

Both finding and loca-
tion are correct.

Do nothing as it is correct. None

>
0

0 Absence > Γ Finding is present as
per FC.

Flip the finding from ab-
sence to presence. Leave
the location unspecified.

Remove ”no < Fi >
and add ”yes < Fi >”
in the sentence: < Si >

≈
0

0 Presence <=
Γ

FC Model is saying
finding is absent

Flip the finding from
present to absent. Leave
the location unspecified
as it is either close or
unspecified already.

Remove ”yes < Fi >
and add ”no < Fi >” in
the sentence: < Si >

≈
0

0 Presence > Γ FC model is saying
finding is absent

Flip the finding from
present to absent. Remove
location hint since the
location is far away.

Remove ”yes < Fi >,
add ”no < Fi >” ,
and remove location <
Ai > from the sentence:
< Si >

>
0

1 Presence <=
Γ

Both finding and loca-
tion are correct. Find-
ing is a presence find-
ing

Do nothing as it is correct. None

>
0

1 Presence > Γ Finding is correct and
present but location is
wrong

Drop location only. Keep
the finding.

Remove location
< Ai > from the
sentence: < Si >

All other combinations. Either Ep or lp is in-
correct.

Do Nothing as FC Model it-
self is incorrect.

None

Table 3: Details of the datasets used in experiments.

Dataset Patients Images Findings Regions Real/Synth.
Train/Val/Test

RadCheck[14] 44,133/6,274/12,538 243,311 49 922,295 1.616M/27.047M
CImaGenomeG[34] 288/33/69 461 35 5,477 4,063/23,463
MS-CXR[8] 478/54/114 925 8 2,254 2,247/24,338
ChestXray8[31] 457/51/109 880 8 1,571 1,571/10,137
VinDr-CXR[17] 9,450/1,050/2,250 15,000 23 69,052 47,973/132,632

location (IOUpi ≤ Γ) or not. Here we choose Γ = 0.01 in normalized image coordinates as that
was empirically found to be the gap between anatomical regions in chest X-ray regional annotations.
With this quantization, we have 2 x 2 x 2 x 2 = 16 possible combinations to analyze for errors. Of
these, the combination (Lp = 0, Ep = 1, IOUpi > Γ) is impossible for an absent finding since
its location is not mentioned in reports. Of the 15 combinations, 6 correspond to consistent output
from the FC model. These were manually analyzed to arrive at an interpretation and a corrective
action, from which 5 unique prompt templates were designed as shown in Column 6 of Table 2. The
remaining combinations were potential inconsistency cases in the prediction of the FC model itself.
While the FC model performed well across the datasets tested, a potential error in the FC model
could potentially worsen the report quality. Fortunately, because we regressed on both location and
veracity, we can spot such inconsistencies through these combinations to conservatively disable any
corrective action. For example, a combination of (Lp = 0, Ep = 0, IOUpi ≤ Γ) for an absent
finding Fi is a case where either the location prediction or the veracity indicator is incorrect.

LLM-based sentence correction

Given the FFL patterns and sentences extracted from automated reports, instances of prompts are
obtained using the prompt templates indicated in Column 6 Table 2 and given to a large language
model to initiate sentence modification and correction. Specifically, we used Llama3.2 as it was
freely available and fit within the GPU size of our server. The sentence returned by the LLM are
then assembled to form the corrected report. Since duplicate sentences could arise from multiple
findings being edited in a given sentence, they are detected and removed. Depending on the order of
findings edited, the actual sentences in the corrected report may come in a different order than the
automated report, which can also be corrected in a post-processing final step of assembly.
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Figure 4: Illustration of FC model accuracy in correct/incorrect finding classification across the test
splits of multiple datasets.(a) Chest ImaGenome Gold dataset (b) MS-CXR, (c) ChestXray8 from
NIH, and (d) VinDr-CXR.

Table 4: Illustration of LLM-based report correction showing the original sentence, the incorrect
finding, the actual LLM prompt generated, and the resulting corrected sentence.

Original Sentence Incorrect find-
ing

LLM Prompt (w/o sen-
tence)

LLM-Corrected Sentence

Left-sided pleural effusion
found and the right atelec-
tasis still remains.

yes|pleural effu-
sion

Remove ”pleural effu-
sion” from sentence:

Right atelectasis still remains.

The chest x ray image
shows no focal consoli-
dation, pulmonary edema,
pleural effusion or pneu-
mothorax

no|pneumothorax Remove ”no pneumoth-
orax” from the sentence:

The chest X-ray image shows
no focal consolidation, pul-
monary edema, pleural effu-
sion.

The chest x ray image
shows no focal consoli-
dation, pulmonary edema,
pleural effusion or pneu-
mothorax

no|pneumothorax Remove ”no pneumoth-
orax” and add ”yes
pneumothorax” in the
sentence:

The chest X-ray image shows
no focal consolidation, pul-
monary edema, or pleural effu-
sion, but shows pneumothorax.

There is left pleural effu-
sion and pneumothorax

yes|pleural effu-
sion

Remove ”left pleural ef-
fusion” but keep the
”left pneumothorax” in
the sentence:

There is left pneumothorax.

The chest x ray image
shows no left focal consoli-
dation.

no|consolidation Remove ”left” from the
sentence:

The chest x ray image shows
no focal consolidation.

Table 5: Illustration of FC model evaluation under multiple datasets. The last two rows show com-
parison with two SOTA methods for fact-checking and phrasal grounding. Here CG stands for
ChestImaGenome Gold, C8 is ChestXray-8, MCXR is MS-CXR, and VinDr stands for VindDr-
CXR.

Method Metric CG MCXR C8 VinDr
FC Model Accuracy 0.92 0.94 0.92 0.90
FC Model MIOU 0.54 0.53 0.57 0.49
R/F Model Accuracy 0.84 0.78 0.81 0.83
Maira-2 MIOU 0.39 0.48 0.51 0.42

Table 6: Illustration of the report quality improvement using fact-checking guided LLM using vari-
ous report quality metrics. Here RadF1 stands for Radgraph F1.

Generator RadF1 RQ BLEU SBERT
(A,G) (C,G) (A,G) (C,G) (A,G) (C,G) (A,G) (C,G)

RGRG[29] 0.52 0.67 0.46 0.52 0.24 0.29 0.33 0.43
XrayGPT[30] 0.39 0.45 0.37 0.48 0.14 0.24 0.26 0.38
GPT4-in 0.43 0.51 0.35 0.47 0.11 0.19 0.09 0.14
R2GenGPT[32] 0.54 0.58 0.37 0.49 0.19 0.27 0.38 0.47
CV2GPT2[18] 0.41 0.49 0.38 0.48 0.14 0.24 0.43 0.54
CheXRepair[24] 0.38 0.43 0.36 0.44 0.21 0.28 0.39 0.46
Maira-2[1] 0.58 0.63 0.52 0.59 0.20 0.26 0.43 0.51
Avg.Improv. 13.5% 27% 48.2% 32.5%
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4 Results

We now report our evaluation of the report correction approach using multiple benchmark datasets
and report generators.

Datasets used and created

We selected several publicly available multi-institutional datasets of chest X-ray images annotated
for findings and their locations as summarized in Table 3. All datasets were clinician validated and
vetted for bias and fairness during their IRB approval. For training the fact-checking model, we
created a synthetic dataset as described in Section 3.2 starting from the ChestImaGenome Silver
dataset[35] which in turn was derived from MIMIC-CXR[9]. The resulting dataset called RadCheck
contains over 24 million samples of image pairings with both correct and incorrect finding-location
descriptions and is now available in open source on Huggingface[14]. Finally, as other datasets
listed in Table 3 already provided findings and locations without ground truth reports, we used the
same mixing and matching methodology specified in Section 3.2 to create the correct and incorrect
pairings for our evaluations experiments. The testing partitions of the datasets were used for the
evaluations, while the training partition of RadCheck was used for training the FC model.

Report generators

We also selected 7 SOTA automated report generators whose Github code was freely avail-
able. These included MAIRA-2[1], ChexRepair[24], RGRG[29], XrayGPT[30], R2GenGPT[32],
CV2DistillGPT2[18] and our in-house hospital implementation of GPT-4 (GPT4-inhouse). These
included automated report generation methods that are based on the latest LLava-style VLM models,
with varying capabilities including phrasal ground (RGRG), multi-view and longitudinal informa-
tion handling (MAIRA-2), and distillation-based models.

Finding error detection performance

We evaluated the accuracy of FC model in finding veracity prediction and localization using the test
partitions of the datasets shown in Table 3. The performance was seen to remain stable for different
datasets as shown by the ROC curves across datasets in Figure 4. The model consistently yielded an
accuracy over 90% for correct/incorrect finding classification, as shown in Table 5. By using 10 fold
cross-validation in the generation of the (70-10-20) splits for the datasets, the average accuracy of the
test sets lay in the range 0.92 ± 0.12. In addition, we measured the spatial localization performance
through mean IOU measure of spatial overlap between the predicted and ground truth bounding
boxes of finding provided in the datasets. This was found to lie in the range 0.49-0.57, indicating
that the predicted locations of findings from the fact-checking model have at least 50% overlap with
the ground truth finding locations.

Comparison to other methods

With no prior work on fact-checking with phrasal grounding for chest X-ray reports, we compared
to the nearest methods that either do phrasal grounding Maira-2[1]) or real/fake classification (the
R/F Model from [16]). The results are shown in Table 5 with the last two rows recording the relevant
numbers for a regressor or classifier respectively showing that the FC Model outperforms both these
methods across all the datasets.

Report correction performance

Using an LLM to correct report sentences based on the corrective action templates provided in
Table 2 resulted in well-formed sentences with the erroneous portions removed. Table 4 shows
examples of report sentences corrected through the LLM in this manner. As can be seen, the resulting
sentences are properly formatted language-wise, and reflect the intended corrective action.

To objectively measure the performance improvement across report generators, we ran the report
generation tools on the test partitions of all the datasets. We then extracted the findings (FFL pat-
terns) and their anatomical locations as described in Section 3.1. A similar processing was applied
to the corrected reports and the ground truth reports when available.

Report quality improvement across metrics

We then recorded the report quality improvement by noting the difference in similarity between auto-
mated report (A) to the ground truth report (A,G), versus the similarity between corrected report (C)
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Table 7: Illustration of report quality improvement using RQ score across various datasets and
report generators. In each case, the corrected report (C) shows higher similarity to the ground truth
report (G) than the automated report. Here CG=ChestImaGenome Gold, C8=Chest-Xray8, and
VinDr=VinDr-CXR datasets.

Generator CG MCXR C8 VinDr
RQ RQ RQ RQ

(A,C) (A,G) (A,C) (A,G) (A,C) (A,G) (A,C) (A,G)
RGRG[29] 0.46 0.52 0.51 0.62 0.38 0.49 0.51 0.63
XrayGPT[30] 0.37 0.48 0.45 0.49 0.35 0.42 0.46 0.54
GPT4-inhouse 0.35 0.47 0.46 0.54 0.41 0.48 0.51 0.58
R2GenGPT[32] 0.37 0.49 0.44 0.54 0.38 0.47 0.51 0.57
CV2DistillGPT2[18] 0.38 0.48 0.39 0.49 0.41 0.47 0.52 0.6
CheXRepair[24] 0.36 0.44 0.45 0.51 0.43 0.49 0.51 0.59
Maira-2[1] 0.52 0.59 0.47 0.58 0.41 0.49 0.50 0.61
Avg. Impv. 13.5% 18.7% 19.14% 16.5%

and the ground truth report (C,G). The similarity between two reports was measured using several
metrics, selecting representative methods from lexical word overlap scores (BLEU[20]), semantic
textual matching (SBERT[37]), clinical accuracy F1-score [7], and phrasal-grounded accuracy such
as RQ[15]. We used the Chest ImaGenome Gold dataset for this experiment as it had ground truth
report with clinician validated findings. The resulting values of these metrics across the report gen-
erators for this dataset are shown in Table 6. This table indicates that the report quality improved
across all report generators independent of which metric was used for comparison with improve-
ments ranging from 13.5%-48.2% across the metrics and an average around 30.5% improvement
seen for this dataset.

Report quality improvement across datasets

Finally, we evaluated the generalization of the report quality improvement performance across mul-
tiple datasets and report generators. Since some of the metrics (BLEU, SBERT) needed full ground
truth reports which were not available for all datasets, we focused the evaluation using the RQ score
as it utilized the finding as well as location information in the provided ground truth across datasets.
The resulting performance of the 7 report generators tested across 4 datasets is shown in Table 7.
Since RQ score recorded agreement in the finding identity and spatial overlap in the locations of
findings, it was able to capture the combined improvement in report quality well across all datasets
for all report generators tested, averaging an improvement around 17% across the datasets as shown
in that table.

Limitations

Although our work is the first to date to correct radiology reports in this automated way, it does have
limitations. Due to limited scope, it does not address severity and measurement errors relating to
findings. Secondly, the corrections can be applied to only mentioned findings in reports while missed
mentions cannot be added to the report. Next, potential errors in finding extraction and localization
could lead to prediction error in the FC model and inconsistencies in error interpretation leading to
the selection of incorrect prompts. Finally, the phrasal grounding is currently using bounding boxes
which only approximately localize a finding. Full-fledged segmentation of findings may lead to
better results. Due to space limitations, we have not reported here the performance of our model in
terms of the type of finding errors and their criticality. Finally, the LLM-based report correction can
be continually improved with the design of more specific prompts per finding further specializing
the templates. Since their output is not guaranteed to be the same in each run, variability could still
exist in the reports. These issues will be addressed in future work.

5 Conclusions

In this paper, we have presented a novel method of correction of generative AI reports for chest
X-rays by focusing on findings. We developed a fact-checking model covering a large fraction of
finding errors and interpreted its output to carve out a set of corrective actions and suitable prompts
to result in a higher quality report. Working across data sets and report generators, we have shown
an average improvement in report quality ranging from 17-30% across report generators. We hope
that such a report correction approach can expedite the adoption of AI reporting models in clinical
workflows in future.
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