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Problem scope
● In the general domain of AIOps, i.e. optimizing IT for operations management 

using AI

○ IT performance management, services, operations
● Problems in Log anomalies from application and infrastructure logs (many 

similarities to disease understanding problems)

○ Detection of issues early leading to events (anomaly detection)

○ Prediction of events before they occur (event prediction -> difference between anomaly and event?)

○ Scoping the incident (anomaly localization)

○ Recommending next best action for problem resolution

○ Reducing noise in doing the analysis (reduce false positives in detection and prediction)

○ Notification (involves grouping and reducing unnecessary alerts)



The log anomaly problem space - Summary
● What is the problem?

○ AI for ITOps log anomalies ->anomaly detection, prediction, resolution
● Why is it important?

○ IT infrastructure 24x7 maintenance, mission critical apps
● Why is it difficult?

○ Variety in problems is too large (many systems, infrastructure, code dumps, log types, etc.) so the same method may not work 
for all

○ Labeling data is difficult (needs self-supervised or unsupervised methods)
○ Incidence distribution is very skewed (A lot of normal and few abnormals makes training skewed)
○ Data preparation itself may need work

● How is it being solved?
○ Machine learning techniques (classical, deep learning)

■ Parsing for essential feature extraction, and learning 
■ Direct learning from textual encoding
■ Any attention methods?

○ Which method(s) have proven to work well?
● Where is innovation needed?

○ Avoid manual feature extraction
○ Capture context and order in the log data
○ Better model the difference between normal and anomalous logs in the presence of imbalanced data



Watson AIOps – A tool for log anomaly detection

● Open questions:
○ How does it handle the enormous 

variations in logs, and input data?
○ How does it do this totally automatically?

● Is the basic functionality?
○ Anomaly prediction
○ Event grouping and clustering
○ Search for similar incidents for 

recommendation generation



Log Analysis Pipeline in Watson AI Ops
● Tasks:

○ Training
○ Inference 
○ Detection

● Pipeline:
○ Log parsing

■ Convert to structured space
○ Feature engineering
○ Anomaly detector training

● How does prediction work 
currently?

● Why do text embedding?
○ Robustness to log variations?

■ Is it still per system type?

Log text 
parsing

Text 
embedding/
encoding

Machine 
learning



Questions & ideas
● What are some open problems in this space? 
● I see color being used in the logs, can this be a cue in 

the analysis?
● Since the logs are produced by code, why not do 

something at coding time to make it easy to detect?
● For time series logs, can we use signal detection 

techniques with or without ML?
● Which is more important?

○ Precision or recall?



Research 
● Experiments with existing models
● Analysis of representative papers
● Proposed new model



Conducting baseline experiments with existing models.

● I had to setup a new environment for the notebook, then install pytorch
● Git Clone the repository from 

https://github.com/logpai/loglizer/blob/master/README.md
● Started a notebook to do the various model testing experiments 
● Ran the decision tree model on the HDFS dataset
● Tuned the parameters to get F-score of 0.732 but saw that I can do better with 

more feature tuning

https://github.com/logpai/loglizer/blob/master/README.md


• Experiments with decision trees

Total Data Size train_ratio Train amt Test amt Precision Recall F-measure value

7940 0.9 7145 (~90%) 749 (~10%) 0.938 0.469 0.625

7940 0.7 5557 (~70%) 2383 (~30%) 0.949 0.596 0.732

7940 0.5 3969 (~50%) 3971 (~50%) 0.985 0.427 0.596

7940 0.4 3175 (~40%) 4765  (~60%) 0.988 0.436 0.605

7940 0.3 2381 (~30%) 5559  (~70%) 0.991 0.486 0.652

Dataset tested: HDFS Logs
● For Decision Trees, decreasing training ratios correlate with higher precision 

values
○ Occasional low recall, the F-measures are fluctuating roughly 

around 0.6 and 0.7



Experiments with Logistic Regression
Total Data Size train_ratio Train amt Test amt Precision Recall F-measure value

7940 0.9 7145 (~90%) 795 (~10%) 0.941 0.500 0.693

7940 0.7 5557 (~70%) 2383 (~30%) 0.95 0.606 0.740

7940 0.5 3969 (~50%) 3971 (~50%) 0.986 0.433 0.602

7940 0.4 3175 (~40%) 4765  (~60%) 0.988 0.441 0.610

7940 0.3 2381 (~30%) 5559  (~70%) 1 0.259 0.412



Analysis of related papers
● Amir Farzad∗, T. Aaron Gulliver, 

“Unsupervised log message anomaly detection”
● Seems to use a chain of encoders

○ Encoder 1 to learn features of normal and abnormal 
data

○ Encoder 2 to learn features of normal data only 
(Isolated forest)

○ Encoder 3 to learn features of normal data only
○ Detect anomaly by comparing the feature averages of 

normal data versus mixed data

● Is this necessary?
○ Why can’t the features extracted from Encoder 2 be 

directly used for separation?

● The F-score is lower for anomaly detection



Code2Vec Paper summary
● Input: method snippet, semantic label for the snippet 

(presumably from the actual name itself abstracted)
● Pre-processing: 

○ Parse the code snipper to extract an abstract syntax tree (AST)
○ Extract vocabulary and context vectors as paths between terminal 

nodes
○ Label the snippet with a method label (may match the actual name 

or some abstraction of it)

● Train an encoder that uses :
○ A fully connected layer for each context vector
○ Weighted combination of the encodings of context vectors as a way 

of applying attention
○ A classifier at the end
○ Learn the attention weights end-to-end

● Accuracy:
○ Precision 63.3%, recall 56.2% F-score 59.5% 

● Question:
○ How is this useful in anomaly detection?



DeepLog Summary
● Parses logs into log keys (aka key terms)
● Puts them in a sequence, and trains LSTM 

model
● Predicts the next log key as normal or 

abnormal

• How to choose window 
size?

• Need to see good 
examples of normal 
and abnormal 
sequences

• How to classify a log 
key as anomaly?



LSTM Model – My understanding
● A model to learn pattern information from 

sequence data

○ E.g. sentences, event streams
● The model has 4 gates:

○ Controls how much information from past cell to 
remember/forget

○ How much of the current data to learn from

○ How much of the recurrent state to weigh-in

○ How much learned information to pass onto the next
● A special case of a recurrent neural network 

(RNN)



What is DeepLog doing under the covers
● The example works with pre-extracted log keys

○ HDFS_100k.log_structured.csv column EventID

○ Block IDs are used to cross-reference and get the labels from anomaly_label.csv
● The event sequence is being modeled through LSTM

1 81109 203518 143 INFO
dfs.DataNode$Dat
aXceiver

Receiving block blk_-1608999687919862906 src: 
/10.250.19.102:54106 dest: /10.250.19.102:50010 E5

2 81109 203518 35 INFO dfs.FSNamesystem

BLOCK* NameSystem.allocateBlock: 
/mnt/hadoop/mapred/system/job_200811092030_0001/job.jar. 
blk_-1608999687919862906 E22

3 81109 203519 143 INFO
dfs.DataNode$Dat
aXceiver

Receiving block blk_-1608999687919862906 src: /10.250.10.6:40524 
dest: /10.250.10.6:50010 E5

4 81109 203519 145 INFO
dfs.DataNode$Dat
aXceiver

Receiving block blk_-1608999687919862906 src: 
/10.250.14.224:42420 dest: /10.250.14.224:50010 E5

5 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

PacketResponder 1 for block blk_-1608999687919862906 
terminating E11

6 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

PacketResponder 2 for block blk_-1608999687919862906 
terminating E11

7 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

Received block blk_-1608999687919862906 of size 91178 from 
/10.250.10.6 E9

8 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

Received block blk_-1608999687919862906 of size 91178 from 
/10.250.19.102 E9

9 81109 203519 147 INFO
dfs.DataNode$Pac
ketResponder

PacketResponder 0 for block blk_-1608999687919862906 
terminating E11

[8, 8, 0, 8, 3] -> 0
[8, 0, 8, 3, 2] -> 0 
[0, 8, 3, 2, 3] -> 0 
[8, 3, 2, 3, 2] -> 0 
[3, 2, 3, 2, 4] -> 0
[2, 3, 2, 4, 4] -> 0 
[3, 2, 4, 4, 3] -> 0 
[2, 4, 4, 3, 2] -> 0 
[4, 4, 3, 2, 4] -> 0
[4, 3, 2, 4, 5] -> 0



DeepLog Experiments – As a function of Window 
Size

Hidden 
size

Window 
size

Train 
ratio

epochs Batch 
size

Recall Precision F-score

32 5 80% 2 32 0.17 0.47 0.255

32 10 80% 2 32 0.158 0.714 0.259

32 15 80% 2 32 0.126 0.888 0.22

32 20 80% 2 32 0.015 1.0 0.03

Window too large degrades performance. Size of 10 
seems to be about optimal for this choice of hyper 
parameters



DeepLog Experiments – As a function of Training 
data

Hidden 
size

Window 
size

Train 
ratio

epochs Batch 
size

Recall Precision F-score

32 10 80% 2 32 0.158 0.714 0.259

32 10 60% 2 32 0.22 0.667 0.33

32 10 50% 2 32 0.192 0.68 0.298

32 10 30% 2 32 0.132 0.5 0.20



Word2Vec experiments

● Word2Vec embedding for representing words

○ Words from a vocabulary
● To get word2vec working

○ Installed gensim library

○ Install pretrained model from Amazon AWS on 
Google News 

○ Installed NLTK for word processing
● Built a fresh model for the HDFS data

○ Pre-processed the HDFS records

○ Ran CBOW and N-gram models



BERT (Bi-directional Encoder Representations from transformers)
● An embedding model that captures the use context of 

words better than Word2Vec

○ Word2Vec gives the same encoding for a word regardless of its use 
in a sentence

○ BERT gives a different encoding for the word depending on the 
sentence in which it occurs
■ I arrived at the bank after crossing the river
■ I went to the bank to deposit my check

● BERT models extract high quality language features 
from text data

● We can fine-tune these models on a specific task such 
as:
○ Sentiment analysis 
○ question answering
○ Sentence completions.
○ Sentence similarity for retrieval

● There are a lot of variants on BERT!



Studies with BERT
● Installed BERT from Huggingface

○ https://github.com/huggingface/transformers
● Also installed SentenceBERT

○ https://github.com/UKPLab/sentence-transformers
● Training on how to use the pipelines:

○ https://www.kaggle.com/funtowiczmo/hugging-face-transformers-how-to-use-pipelines

https://github.com/huggingface/transformers
https://github.com/UKPLab/sentence-transformers
https://www.kaggle.com/funtowiczmo/hugging-face-transformers-how-to-use-pipelines


Applying BERT to our HDFS classification problem
● Key idea: Encode sentences of log traces in BERT and try to classify the 

vectors as normal or abnormal
● Larger HDFS dataset supplied:

● Only normal training data is provided here! 
○ HDFS_train has 10,558.588 million traces for 541,385 block_ids
○ Abnormal_test has 16,838 block_ids (around 3% abnormals it looks like)
○ Baseline system should have 97%accuracy for normals
○ Can I use some of them to make the abnormal set and learn to separate? – For example, using 30% 

of the abnormal data and add to the classifier?



Ideas to build the classifier
● Direct classification of BERT embeddings:

○ Take the content field of the HDFS logs for both abnormal and normal
○ Encode using sentence BERT
○ Feed it to a classifier

● Build an intermediate embedding modeling the similarity between abnormal 
samples and separate them from normal samples.
○ Since we have very large normal samples and very abnormal samples, can we use an approach that 

takes the abnormal examples as positive examples of the anomaly and the large negative examples 
to build an embedding based on contrastive loss?

○ Learns a new embedding that captures the similarity between positive samples to better expose 
their patterns

○ Classify using the new embedding focused on the abnormal class
○ https://arxiv.org/abs/2004.11362 (NeurIPS 2020)

https://arxiv.org/abs/2004.11362


Algorithm
● Training:

○ Build a batch of 1000 (200 abnormal and 800 normal?)
○ 768 size vector input
○ Same size hidden layer embedding
○ Output layer with two-class or just a softmax or ReLU operator?
○ In each batch, put some abnormal samples and lots of negative 

samples (i.e. normal samples) and learn to classify
○ Go through all the positive examples in multiple batches to develop 

the embedding
○ Chain it with a regular classifier (e.g. fully-connected network)

● Inference:
○ Feed the remaining abnormal and normal vectors at a time, use 

this embedding for classification
● Two loss functions:

○ Binary cross-entropy (direct learning from BERT)
○ Contrastive loss (Evolve a new embedding using BERT encoding)

● Does that look reasonable to try?

768 input vector 
per trace (normal 
or abnormal)

Binary output 
vector 
(1=abnormal, 
0=normal

New similarity 
embedding

300

768



Update March 12, 2021
● Implementation of the contrastive learning of log anomalies
● Data preparation:

○ Processed HDFS_train.json, 541,385 samples
○ Processed HDFS_abnormal_test.json, 16,838 samples

○ Grouped all text per block

○ Formed BERT encoding per word, sentence, and group
■ Process takes a long time (1000 blocks per 20min or so)
■ Current experiments retained 1000 blocks each from normal and abnormal

● Contrastive model design
○ Input is a batchsize x BERT-encoded vector, each row represents a block encoding

■ 1000 x 768
○ Single hidden layer with RELU, projection layer for building the contrastive encoder
○ 20% abnormal and 80% normal in each batch
○ Trained on 100 epochs per batch

● To test the model, took an abnormal vector and ranked the nearest vectors from the 
contrastive encoding. If the nearest vectors were within the abnormal space, we could 
use this to classify later, but from the point of finding if it is normal or abnormal, this 
could be sufficient.



Block text size patterns for normal and abnormal 
blocks

○ Can these patterns be somehow exploited?

■ X-axis is sequence of blockIDs and y-axis is number of lines of text (left side is normal)



Train-test experiments
● 1000 abnormal blocks
● 2000 normal blocks
● Train-test split (80%,20%)
● During contrastive encoder learning

○ 800 abnormals, 1600 normal  blocks
○ Batch size=768, 
○ Projection head output=batch size
○ Encoder size=300
○ Learning rate =0.001
○ Temperature =0.05

● During contrastive classifier training
○ 800 abnormals, 1600 normal blocks (same blocks as above)
○ Batch size=300
○ Number of classes = 2
○ Dropout=0.5, hidder layer=150, same learning rate as encoder

● Accuracy on the test split: 99.67%



Supervised contrastive learning- Inference

768  vector 
per log

Input  
Label vector

Anomaly

Normal

Contrastive 
Encoder

Projection 
Head

Contrastive Loss
300

2 labels



Supervised contrastive learning with BERT for 
HDFS logs – BERT-based encoding of blocks

Sentence 
Extractor

Sentence1

Sentence2

Sentence n

Log 
block

BERT 
encoding

BERT 
encoding

BERT 
encoding

Average
vector

768-size 
BERT 
average 
vector

Log  block Encoding



Contrastive Encoder Training

768 vector 
per log

Labels

1

1

0

RELU

Contrastive 
encoder Projection Head 

to apply 
contrastive loss

Input batch 
size=768

Size: 300

768 labels

200 Positive 
samples 
(anomalies)

568 Negative 
samples 
(normal)

Contrastive Loss



Supervised contrastive learning- Classifier with frozen encoder

Mixed set of 2400 
samples in batches of 
300 each (800 abnormal, 
1600 normal)

768 size 
vector per 
log file

RELU

Frozen 
Contrastive 
Encoder

Classifier

Sparse 
Categorical 
Crossentropy

Input batch 
size=300 300

2 labels

150 75

Dense+
Drop out 
=0.5, 
RELU

Drop out 
=0.5

Softmax



Comparison with SVM model

Sentence 
Extractor

Sentence1

Sentence2

Sentence n

Log

Event 
encoding

Event 
Encoding

Event 
encoding

TF/IDF feature 
extractor

16-element 
feature 
vector

E22

E05

E07

Assemble 
numpy
vector

SVM model

Label (1/0)
Sentence with no 
event association

Pattern 
inference

New 
Encoding



Comparison with other models
● The models in loglizer used event IDs corresponding to each line in a block of 

text for each block_id.

1 81109 203518 143 INFO
dfs.DataNode$Dat
aXceiver

Receiving block blk_-1608999687919862906 src: 
/10.250.19.102:54106 dest: /10.250.19.102:50010 E5

2 81109 203518 35 INFO dfs.FSNamesystem

BLOCK* NameSystem.allocateBlock: 
/mnt/hadoop/mapred/system/job_200811092030_0001/job.jar. 
blk_-1608999687919862906 E22

3 81109 203519 143 INFO
dfs.DataNode$Dat
aXceiver

Receiving block blk_-1608999687919862906 src: /10.250.10.6:40524 
dest: /10.250.10.6:50010 E5

4 81109 203519 145 INFO
dfs.DataNode$Dat
aXceiver

Receiving block blk_-1608999687919862906 src: 
/10.250.14.224:42420 dest: /10.250.14.224:50010 E5

5 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

PacketResponder 1 for block blk_-1608999687919862906 
terminating E11

6 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

PacketResponder 2 for block blk_-1608999687919862906 
terminating E11

7 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

Received block blk_-1608999687919862906 of size 91178 from 
/10.250.10.6 E9

8 81109 203519 145 INFO
dfs.DataNode$Pac
ketResponder

Received block blk_-1608999687919862906 of size 91178 from 
/10.250.19.102 E9

9 81109 203519 147 INFO
dfs.DataNode$Pac
ketResponder

PacketResponder 0 for block blk_-1608999687919862906 
terminating E11

But these event Ids 
are not available 
for our dataset
<HDFS_train.json>

HDFS_100k.log_structured.csv



Mapping text to event IDs
● BLOCK* ask 10.251.91.84:50010 to replicate blk_-764842520721893215 to datanode(s) 

10.251.39.209:50010

○ BLOCK* ask <*> to replicate <*> to datanode(s) <*> 

■ (as given in HDFS_100k.log_structured.csv)

○ But to match the pattern I used

■ BLOCK* ask <regex> to replicate <regex> to datanode(s) <regex>

■ Regex= "[a-zA-Z0-9-_:\./]*”

● Results:
○ 16838 abnormal blocks
○ 104,330 sentences that didn’t match to the given patterns
○ 192470 out 288250 sentences or 66.7% coverage with the given event IDs
○ Extracted 10 new evnt patterns
○ Next step is to repeat the pattern extraction for normal blocks (10 million of those!)



New patterns extracted
● 10 new patterns from abnormal text

<*>:Got exception while serving <*> to <*>
<*>:Exception writing block <*> to mirror <*>
<*>:Failed to transfer <*> to <*> got java.io.IOException: Connection reset by peer
Adding an already existing block <*>
BLOCK* ask <*> to replicate <*> to datanode(s) <*>
BLOCK* ask <*> to replicate <*> to datanode(s) <*> <*>
BLOCK* NameSystem.addStoredBlock: blockMap updated: <*> is added to <*> size <*>
BLOCK* NameSystem.delete: <*> is added to invalidSet of <*>
Unexpected error trying to delete block <*> BlockInfo not found in volumeMap.
BLOCK* NameSystem.addStoredBlock: addStoredBlock request received for <*> on <*> size <*> But 
it does not belong to any file



Plan of next steps
● Extract all new event ID patterns for normal and abnormal train/test blocks
● Construct the sequence of ID patterns for each block of text
● Form a numpy array of these string literals and feed this to the conventional 

models
○ They will do their own feature extraction (e.g. SVM model is using TF/IDF  feature extraction)
○ Run the model and obtain results
○ For the DeepLog using these sequences to train the LSTM model

● Comparison ideas:
○ Event ID-based features + SVM/DeepLog (hand-crafted features)
○ Directly encode text through BERT + SVM/Deeplog (deep learned features)
○ Directly encode text through BERT + Multi-label contrastive learning model (mine, pairwise 

learning of normal/abnormal patterns)
○ Trained and tested on full HDFS dataset



Event ID sequence recovery from text blocks
● The regex pattern matcher gave about 66.7% coverage with the given event 

IDs
● 91842 sentences out of 10,500,000 sentences still didn’t find a match.
● Wondering if I can work with partial patterns, i.e. some sentences in a block 

may not match any pattern, and I can skip their event IDs and model this 
inherently as missing data?

['E22', 'E5', 'E5', 'E5', 'E26', 'E26', 'E26’, ?,'E9', 'E11', 'E9’, ?', 'E9']



Larger scale testing of contrastive learning with 
BERT encoding
● Randomly sampled the 541385 normal blocks into 5 batches of 2000 blocks.
● Randomly sampled the 16838 abnormal blocks into 5 batches of 1000 blocks.
● Saved the BERT encodings of 100 blocks at a time into numpy arrays (took several 

hours)
● Trained the contrastive learning with cross-validation on these batches. 
● During contrastive encoder learning

○ 800 abnormals, 1600 normal  blocks, Batch size=768, Projection head output=batch size, Encoder size=300, 
Learning rate =0.001,Temperature =0.05

● During contrastive classifier training
○ 800 abnormals, 1600 normal blocks, Batch size=300, Number of classes = 2, Dropout=0.5, hidder

layer=150, same learning rate as encoder
● Average accuracy across the batches for test splits: 97.32%



Contrastive learner ablation experiments
● From the 541385 normal training and 16838 abnormal, select randomly, 2000 

normal and 1000 abnormals.
● 80% for training (=1600 normal, 800 abnormals).
● 20% for testing (=400 normal, 200 abnormals)
● Using trainable parameters for the contrastive encoder during classifier training 

(i.e. end-to-end training)
● Vector length=768 (BERT vector size)
● Batch size=768
● Epochs=10 (encoding, =100 for classifier)
● Effect of positive batch size = 0.03%, 0.01%,2

○ 71.83 (2), 71.7% (8), 67.67% (23)



Batch 
size

Encode
r epoch

Classifi
er 
epoch

Bert 
vector 
length

Contras
tive 
encoder 
size

Training 
(normal
)

Training 
(Abnor
mal)

Test 
(normal
)

Test 
(abnor
mal)

Positiv
e 
batch 
size

Learning 
rate/temper
ature

Accurac
y

768 10 100 768 300(trai
nable)

1600 800 400 200 23 0.001/
0.05

71.33

768 10 100 768 300(trai
nable)

1600 800 400 200 8 0.001/
0.05

71.7

768 10 100 768 300(trai
nable)

1600 800 400 200 2 0.001/
0.05

71.83

30 10 100 768 300 
(trainabl
e)

1600 800 400 200 2 0.001/
0.05

72.67

30 10 100 768 300 
(fixed)

1600 800 400 200 2 0.001/
0.05

71.33

300 10 100 768 300 
(trainabl
e

1600 800 400 200 2 0.001/
0.05

70.33

Smaller batch size gives improved accuracy
Smaller positive batch size gives improved accuracy
All of these were with trainable encoder even after self-training
Batch size for classifier = 30 throughout



Batch 
size

Encode
r epoch

Classifi
er 
epoch

Bert 
vector 
length

Contras
tive 
encoder 
size

Training 
(normal
)

Training 
(Abnor
mal)

Test 
(normal
)

Test 
(abnor
mal)

Positiv
e 
batch 
size

Learning 
rate/temper
ature

Accurac
y

768 10 100 768 300(trai
nable)

1600 800 400 200 23 0.001/
0.05

71.33

768 10 100 768 300(trai
nable)

1600 800 400 200 23 0.001/
0.01

72.17

768 10 100 768 300(trai
nable)

1600 800 400 200 23 0.01/
0.01

66.67%

Effect of learning rate and temperature


