ContrastBERT: Supervised Contrastive Learning of
BERT-Encoded IT logs for Anomaly Classification

Raziuddin Mahmood
University of California, Berkeley
Berkeley, CA, USA
razi_mahmood @berkeley.edu

Xiaotong Liu
IBM Watson Al
San Jose, CA, USA

Abstract—Maintaining up time for cloud systems is critically
important. Many of the systems output their statuses in logs
that record all major transactions and events encountered. These
have become a valuable resource for understanding system status
and performance issues. Often, the IT logs came in the form of
free text intermixed with identifiers such as block ids. While
some anomalies may form distinct event patterns, learning such
patterns itself may be difficult. In this paper, we present an
approach that directly uses the textual content of the logs and
derives a discriminative embedding from supervised contrastive
learning of Sentence BERT-encoded IT logs. The contrastive
embedding is then used to train a contrastive classifier and
combined with a one class SVM to increase the accuracy with
which both anomalies and normal logs are recognized. Results
are shown on several benchmark datasets and compared to state
of the art methods.

Index Terms—BERT, neural networks, IT logs, anomaly de-
tection, supervised contrastive learning

I. INTRODUCTION

Maintaining up time for enterprise cloud systems is criti-
cally important. These include servers, storage, and network
systems, many of which output their status on a continuous
basis in logs [6]. Detecting anomalous events through analysis
of such logs is vitally important to maintain performance and
honor service level agreements. The logs record all major
transactions and events encountered which become a valuable
resource for understanding system status and performance
issues. They are usually small textual documents of a few hun-
dred sentences consisting of language text (English mostly),
interspersed with codes, identifiers, specifications of time, etc.
Figure 1 shows examples of HDFS logs in two different
blocks. Figure 1a shows a normal block while Figure 1c shows
a block that is labeled as anomalous. As can be seen, the two
pieces of text are apparently very similar and the anomaly
is usually due to a small change such as a small textual
fragment being present as extra or being missing, or the order
of events being disturbed. This can also be seen by reducing
these pieces of text to event patterns using popular log parsers
[20] as shown in Figure 1b and Figure 1d. Here the normal and
abnormal patterns differ by a length difference of 1, and out
of order placement of at most two events. In addition, since
anomalies are rare events, training classifiers for such patterns
with severe class imbalance is difficult. Thus discriminating
between anomaly and normal logs is a challenging problem.

Xiaotong.Liu@ibm.com

Anbang Xu
LinkedIn, Inc.
San Francisco, CA, USA
xabang @ gmail.com

Rama Akkiraju
NVIDIA
San Jose, CA, USA
rama.akkiraju@gmail.com

The predominant approaches to log anomaly detection in-
volve extracting event patterns such as those in Figure 1b,d
using tools such as log parsers [20]. Typically, the end-to-
end processing includes parsing logs into structured data, and
creating log sequences to begin the modeling. Once the event
sequences are obtained, they are further analyzed by either
custom feature extractors, such as TF/IDF features and then
sent to classifiers [12] or a deep learning model is trained
on the normal patterns to detect deviations [8]. Both the
detection of event patterns, as well as the reliable classification
of anomalies remain as challenging problems. It is difficult
to infer event patterns reliably and in a general way for the
large variety of text in logs being the output of many different
system components. Similarly, finding anomalies suffers from
the large class imbalance problem making it a challenge for
developing a discriminable classifier.

In this paper, we present two novel enhancements to address
both issues in anomaly classification. Specifically, we work
directly with raw textual logs and produce embeddings that
capture the context better both within and across sentences.
We then find a representation that embeds the log encodings
in a contrastive space that helps differentiate anomalies from
normal logs. The classifiers are then built using the contrastive
embeddings. The result is a better separation of anomalies
from logs leading to higher accuracies and F-scores for the
overall anomaly classification problem.

To our knowledge, ContrastBERT is the first formulation
in which a supervised contrastive embedding is learned for
BERT-encoded text. Previous approaches have used unsu-
pervised contrastive learning as a pre-training step to the
construction of BERT model [17]. Our approach addresses
a major limitation of existing anomaly classification methods
many of which rely on the availability of an exhaustive list
of prior-specified anomaly patterns extractable from textual
logs. The generalized contextual modeling of SBERT allows
easy capture of regular expression and other sequence patterns
that are unique to IT logs without requiring explicit prior
cataloging.

II. RELATED WORK

There are a number of approaches taken by researchers to
analyze logs for anomalies, all of which work with regular
expression patterns captured from raw text messages as event

['Receiving block blk_7503483334202473044 src: /10.251.215.16:55695 dest: /10.251.215.16:50010",
1k_7503483334202473044 src: /10.250.19.102:34232 dest: /10.250.19.102:50010',
t/hadoop/mapred/systen/ job_200811092030_0001/job.split. blk_7503483334202473044",
2473044 src: /10.251.71.16:51590 dest: /10.251.71.16:50010"',
'Received block blk_7503483334202473044 of size 233217 from /10.251.215.16',
'Received block blk_7503483334202473044 of size 233217 from /10.251.71.16

erminating',
ock blk_7503483334202473044 terminating’,

, 'PacketResponder 2 for block blk_7503483334202473044 terminating',

ze 233217 from /10.250.19.102',
o blk_7503483334202473044 size 233217,
added to blk_7503483334202473044 size 233217
010 is added to blk_7503483334202473044 size 233217'
/10.250.19.102"
2473044']

*Receiving block b
"BLOCK+ NameSystem.allocateBlock: /mn
*Receiving block blk_750348333420

'PacketResponder 1 for block blk_7503483334202473044 t

'PacketResponder 0 for bl

*Received block blk_7503483334202473044 of si

'BLOCKx NameSystem.addStoredBlock: blockMap updated: 10.251.106.10:50010 is added t
'BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.215.16:50010 is
'BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.71.16:50
'10.251.215.16:50010 Served block blk_7503483334202473044 to
"Verification succeeded for blk_7503483334202473044"

'Verification succeeded for blk_750348333420

(a)

E5,E5,E22,E5,E11, E9,E11,E9,E11,E9, E26,E26,E26,E3,E2,E2

(b)

['Receiving block blk_-8531310335568756456 src: /10.251.203.149:53912 dest: /10.251.203.149:50010",
'BLOCK* NameSystem.allocateBlock: /user/root/rand/_temporary/_task_200811092030_0001_m_000007_0/part-00007. blk_-8

531310335568756456" ,

‘Receiving block blk_-8531310335568756456 src: /10.251.106.10:36502 dest: /10.251.106.10:50010",
‘Receiving block blk_-8531310335568756456 src: /10.251.203.149: 59042 dest: /10.251.203.149:50010",

'PacketResponder @ for block blk_-8531310335568756456 terminatis

'Received block blk_-8531310335568756456 of size 67108864 from /10 251.106.10",

'PacketResponder 2 for block blk_-8531310335568756456 terminatis

‘Received block blk_-8531310335568756456 of size 67108864 from /10 251.203.149"

‘PacketResponder 1 for block blk_-8531310335568756456 terminating',

‘Received block blk_-8531310335568756456 of size 67108864 from /10.251.203.149"

*BLOCK NameSysten.addStoredBlock: blockMap updated: 10.251.203.149:50018 is added to blk_-8531310335568756456 siz

e 67108864"

'BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.250.7.146:50010 is added to blk_-8531310335568756456 size

67108864

'BLOCK* NameSystem addStoredBlock: blockMap updated: 10.251.106.10:50010 is added to blk_-8531310335568756456 size

67108864"
“Verification succeeded for blk_-8531310335568756456"
‘Verification succeeded for bk -8531310335568756456' 1

©

ES,E22, E5,E5, E11,E9,E11,E9,E11, E9, E26,E26,£26,E2,E2 (4

Fig. 1.

patterns through log parsers [20]. Many feature extraction
methods are applied to such event patterns including PCA [19],
methods to capture co-occurrence patterns between different
log keys [13], and TF/IDF analysis [12]. The classification of
anomalies then uses statistical machine learning methods on
extracted features such as logistic regression or support vector
machines (SVM) [12], and one-class SVM [11]. With the
advent of deep learning approaches, the log anomaly detection
problem is being addressed through deep learning networks
[8]. Specifically, the event sequence pattern is treated as a
text string that follows certain patterns and grammar rules,
and the sequence modeled through an LSTM formalism to
encode the pattern. The normal execution patterns are learned
through the model and deviations from normal system execu-
tion are flagged as anomalies. Similarly other recurrent neural
networks (RNNs) are also used for log anomaly detection [14],
[18]. These networks model the context in one direction only
aiming to predict the next log event sequence pattern given
previous messages.

With the advent of transformer methods such as the bidi-
rectional encoder representations from transformers (BERT),
recent work has tried to model the log event sequences through
BERT [9]. However, the representations used to drive BERT
models are still based on event patterns to be extracted and
the full power of raw textual context is not exploited. Further,
the anomaly detection method is through masked log key
prediction and seeing the deviations from the expected keys
for normal logs limiting the types of anomalies that can be
detected.

III. OUR APPROACH

Our work addresses two of the key limitations of the current
approaches, namely, (a) the need to extract log event patterns,
and (b) designing an embedding that is targeted for separating
the normal from abnormal logs.

Ilustration of the difficulty of anomaly classification in IT logs. The top log (a)-(b) is normal while the lower log (c)-(d) is anomalous.

A. Encoding raw log text using SBERT

In our approach, we model the log text directly using a
variant of BERT called SBERT [16] which is suitable for
predicting at the sentence level rather than the word level.
Let S1,S52,..S; be the sentences in a textual log. Ordinarily,
we could encode each sentence S; using BERT and average to
produce a single sentence vector encoding. However, this type
of averaging has been known to yield a bad encoding [16].
We instead form a single string by concatenating individual
sentences S = 57.53....5k. The resulting string is encoded
using SBERT which uses BERT underneath and is trained
using a Siamese network architecture to enable variable length
strings to be encoded into uniform size encoding vectors.
Even so, since BERT pre-trained models have a maximum
word length of 512, the input text of a log may be broken
into chunks of 512 each for the above modeling. By using
a single string approach to logs, and producing a uniform
length encoding, we normalize for differences in the size of
the textual logs in terms of sentences. Also, by treating such
large chunks of text as one unit, we are able to model the
context over larger distances in text spanning beyond a single
sentence.

B. Generating a contrastive embedding

The SBERT embedding by itself is not a very discriminative
embedding for the purpose of distinguishing between normal
and abnormal blocks. For example, the cosine distance be-
tween a 768-length SBERT embedding of the block of text
in Figure la and c is 0.93 still indicating a high degree of
similarity.

To produce a more discriminable embedding therefore, we
construct a supervised contrastive embedding that is designed
to move the SBERT vectors of abnormal and normal logs
away from each other following the contrastive encoding
paradigm. It models all members of the anomaly logs as
positive samples (label 1) and normal logs as negative samples
(label 0). The contrastive embedding is designed to pull

together SBERT encodings of positive samples while pushing
apart the negative samples of the normal class. In order to
do this effectively, the class imbalance must be addressed
in the training stage. Using the approach of oversampling
the abnormals and under-sampling the normals, we select
training data that is roughly in equal ratios for training such
an encoder. In particular, following the multi-class supervised
contrastive learning framework outlined in [10], we generate
a new encoder-decoder network consisting of an encoder and
a decoder/projection head network. The encoder is a 3 layer
network with one input layer, a hidden dense layer and a
dense fully connected layer with ReLLU activation as shown in
Figure 2. The projection network is another 2 layer network
with a fully connected layer with ReLU, followed by an
output layer with ReLU for binary classification as shown
in Figure 2. The encoder maps incoming SBERT vectors I;
to a representation vector R; normalized to unit hypersphere,
and the projection network renders the output z; to match the
expected output Y;. The similarity between two SBERT log
vectors W; and W; € S; be captured by the contrastive loss
as

exp(z; - 2;/T)

Z exp(z; « 2a/T)

a€A(i)

Lcontrast(si): Z 10g (l)

WJESi

Here z; is the projected vector for SBERT input vector W,
and z; is the projected vector similarly for W; € S; where S;
are the logs that belong to the same class as W;. Finally, z,
is the projected vector for any W, either inside or outside the
class. The contribution between the two classes is weighted by
temperature 7. Also, considering both the anomaly and normal
classes together, the cumulative contrastive loss is given as:
14
Lcontrast - Z Lcontrast(sj) (2)
J

Thus in the above formulation, the design of the contrastive
encoder deliberately deviates from the incidence distribution
of the logs in order to produce an embedding that can separate
the two classes. With this learned embedding, we train two sets
of classifiers. One of the classifiers is a neural net classifier
consisting of 2 dense layers alternating with 2 drop-out layers
with the first layer being a Relu and the second being a
Softmax classifier. Using the balanced data for training ensures
that both the recall for the abnormal class and precision for
the normal class will be high. However, the precision for the
abnormal class tends to be low implying a number of normal
logs may be mis-classified as abnormal. In anomaly detection,
it is desirable to achieve high recall for both anomalies and
normal logs. For this, we augment the classification with a
one-class SVM to learn the larger class (i.e. normal logs).
Such a classifier will have high recall for the normal class
while the recall for the abnormal class may be lower. We
fuse the output of the two classifiers using the following rule
L(i) = Abnormal iff L;(i) = Lo(i) = Abnormal and normal
otherwise, where L1 and Lo are the contrastive and One Class
SVM classifiers respectively.

C. ContrastBERT model - Training

The overall architecture of the proposed ContrastBERT
model in training mode is shown in Figure 2a. The textual
logs from both abnormal and normal textual logs are en-
coded in 512-word chunks using a 768-dimensional SBERT
model available from Huggingface (paraphrase-distilroberta-
base-v1) [5]. The 512 word limitation comes from the original
BERT model built into sentence BERT. Each chunk is then
encoded using a 300-dimensional contrastive encoder with a
64-dimensional projection head for training the encoder. In the
supervised contrastive loss function for training the encoder,
we set temperature=0.05, and a batch size of 30, and trained
over 100 epochs or until the network error convergence was
reached. We used the Adam optimizer for fast convergence
with the learning rate as 0.001. Two NVIDIA P100 GPUs
with 16 GB were used for training and training took less a
few hours. The contrastive encoder had over 1 million param-
eters. The choice of the hyper-parameters for temperature and
learning rate was derived from cross-validation experiments.
We implemented SBERT encoding of logs in PyTorch, and
supervised contrastive learning in Tensorflow with tfa-addons
libraries.

A contrastive classifier was then trained using the learned
encoder as shown in Figure 2b. It consists of 4 layers (2 dense,
2 dropouts of progressively decreasing size 64,32,32,16)and an
output layer which uses a Softmax classifier. The intermediate
layers use RELU for the nonlinearity. During the training of
the contrastive classifier, the weights of the encoder are frozen
as they have already been trained using the projection head.
For the contrastive classifier we used sparse categorical cross
entropy, while the supervised contrastive loss of Equation 2
was used to train the contrastive encoder using the project
head. We used the One Class SVM (OSVM) provided in
sklearn with a radial basis function (RBF)as the kernel, and
gamma=’scale’ and nu = 0.01 to place an upper bound on the
training errors. The embeddings from normal logs were used
to train the one-class SVM. Note that unlike the contrastive
classifier, the OSVM classifier looks only at normals, and
anomalies are not present during training.

D. ContrastBERT model - Inference

To classify incoming IT logs, the inference mode of Con-
trastBERT is as illustrated in Figure 3. All logs (normal or ab-
normal) go through SBERT encoding followed by Embedding
using the contrastive encoder. The embedding vector is fed
to both classifiers (One Class SVM and Contrastive classifier)
and the results fused to produce the final label.

Our fusion method differs from ensemble learning methods
as it is based on a Boolean logic that accepts or rejects the
abnormal hypothesis from the contrastive classifier based on
the inverse evidence seen in the one-class SVM trained on
normals.

E. Time complexity

Time complexity of SBERT encoding (inference) is O(kn)
where k is the number of word tokens in a log message and

n is the number of logs. This stage can be easily parallelized
as a pre-processing step. The contrastive learning complexity
is O(mp) where m is the number of batches and p is the
number of epochs. The number of batches is a function of the
dataset which ranged from 26,000 (HDFS) to 1.2 million logs
(Thunderbird-mini). The overall training time is much smaller
compared to the original BERT model which was trained on
4 cloud TPUs for 4 days.

IV. RESULTS
A. Datasets

We now present results of using our approach for anomaly

classification in IT logs on 3 benchmark datasets summarized
in Table I. The HDFS-1 dataset [19] consists of free text
sentences generated by the Hadoop file system in a cloud
environment while running Map-Reduce jobs. The anomalies
were manually identified using a set of handcrafted rules. The
full HDFS dataset was provided as a single json file consisting
of nearly 11,172,157 messages from 558,223 blocks. Since
the anomalies were marked at the level of a block, the log
messages were grouped by blocks yielding 16,838 anomalous
blocks or nearly 3% of the total blocks were anomalies. The
average length of the normal and abnormal blocks was 13.3
and 10.45 sentences respectively.
The BGL dataset [15] was collected from a BlueGene/L super-
computer system at Lawrence Livermore Labs and recorded
the performance logs consisting of alert (anomalies) and non-
alert messages (indicated by -). Each row was treated as an
individual log message for our analysis yielding 4,747,963 log
messages, of which 348,460 or 7% of the data were anomalies.
Similarly, Thunderbird [15] is another large log dataset in a
format similar to BGL with each row signaling a normal or
abnormal log. The dataset has 20,000,000 log messages of
which 758,562 are anomalous (also 3%) of the full data.

B. Creation of train-test datasets

Using the philosophy of creating a balanced dataset for
the contrastive encoder and classifier, we under-sampled the
normal logs to maintain a appropriate ratio for the abnormal
and normal logs. This allowed the encoder to learn the
characteristics of the two classes without a large bias towards
one class. The one class SVM, however, was trained with only
the normal class to supply the necessary incidence bias during
inference. Specifically, we retained 80% of the abnormal
logs through random sampling. An equal number of normal
logs were retained through random sampling to create the
overall training dataset for the contrastive encoder/classifier.
The dataset used for testing the models, however, followed the
incidence distribution. For this, we used the remaining 20% of
the anomalous logs and retained sufficient randomly sampled
normal logs such that the overall abnormal/normal log ratio
remained the same as in the original dataset. The total number
of logs retained in training and test dataset for the contrastive
encoder and classifier are shown in Table I in Columns 7 and
8. For the One Class SVM, the normal class in the training

dataset was used, while the same test dataset was available for
testing both the contrastive classifier and the One Class SVM.

C. Evaluation metrics

In IT logs, since it is critical to not miss a single abnormal,
the recall of the abnormal cases is the most important metric,
while the precision adds to the burden of verification possibly
increasing costs. The Fl-score is the goto-score for binary
classification [1]. However, when there is class imbalance, it
is important to report an F1-score for the two classes separately
as combining the two classes, or using other metrics such
as accuracy or AUC may give an artificial sense of better
performance due to the extreme dominance of the normal
class. Our goal in designing the anomaly classifier is to
maximize the recall of the anomalous and normal classes. In
doing so, we aim to miss as few anomalies and minimize the
number of false alarms when the normal logs get mislabeled
as anomalies. Thus rather than using a combined F-score, we
evaluate it separately per class using the usual formula of

__ 2xprecisionxrecall
F1 ~ precision+recall per label.

D. Comparison of Performance

We compare ContrastBERT to four major types of ap-
proaches whose code was publicly available. All comparative
algorithms were used as is from open source and their li-
braries/parameter details were as specified in their implemen-
tations posted on github. These include SVMLog, a statistical
machine learning binary classifier with linear kernel and fed
with TF/IDF features derived from log events [3], One-Class
SVM [11], a variant of SVM trained on normal data only
using the same TF/IDF features, DeepLog, a deep learning
classifier modeling the sequence information through LSTM
models [8], and finally, logBERT a recent approach that uses
BERT to encode event sequences derived from logs [9]. The
code for One Class SVM came from Sklearn package, while
SVMLog, and DeepLog were taken from the open source
Loglizer GitHub repository [4]. Finally, logBERT was adopted
from logBERT GitHub repository [2]. Since all these methods
are based on event sequences rather than the raw text, we
adopted the log parser available in logpai [20] to parse the
log messages into log keys. To keep the comparison fair,
we allowed all comparable methods to learn from 80% of
the training data (both normal and abnormal logs randomly
sampled). Note that our method of grouping the individual
messages into logs differs from the approaches used earlier
where chunks were formed based on time duration [14].
Table II lists the performance of the various algorithms (Rows
1-8) in comparison to our approach (Rows 9-10). We observe
from this table that all methods appear to do well on normal
logs. However, the recall performance is worse in non-deep
learning approaches. Secondly, We observe from this table,
that our approach maintains a high recall for both normal and
abnormal classes implying a more accurate and discriminative
anomaly classification using the contrastively learned features.

Comparative methods all showed sensitivity to class imbal-
ance as also previously described [7]. Our approach addresses

Contrastive Encoder Training Supervised contrastive learning- Classifier with frozen encoder

Input batch

T T
§ gl: size=300

parse Categorical
Cross-entropy

° E\\
[] —_—)
W

° D——/f\?o

Input batch size=500

500vector D D D D

per log

Mixed set of 2400 samples in Frozen Dense+ Drop out Classifier

batches of 300 each (800 Contrastive Dropout — _ O
abnormal, 1600 normal) Encoder =0.5, —

RELU Softmax RELV
(b)

Fig. 2. ContrastBERT Log Anomaly Classification architecture. (a) Contrastive encoder training. (b) Classification using frozen contrastive encoder. The
projection head is used to train the contrastive encoder.

Contrastive

—_—
200 Positive 300 Negative el Projection Head O
—— samples to apply

(anomalies) (normal) contrastive loss ReLu

Contrastive
Classifier

Output
Label

Late
Fusion

IT Log 4| Sentence BERT |_.| C‘E’:gz‘:’re

Fig. 3. ContrastBERT log anomaly classification - Overall workflow.

Dataset Total Anomaly | %age Blocks Anomaly | Train Test
Messages Messages | Log units blocks Anomaly ratio | Anomaly ratio
HDFS 11,172,157 | 284,818 3.01% 558,223 16838 26,940(1.0) 112,013(0.031)
BGL 4,747,963 348,460 7.3% 4,747,963 348460 557,536 (1.0) 1,024376 (0.073)
Thunderbird-mini | 20,000,000 | 758,562 3.8% 20,000,000 | 758,562 1,213,698(1.0) | 3,992,421(0.038)
TABLE T

DESCRIPTION OF THE DATASETS USED FOR EXPERIMENTS. THE LAST TWO COLUMNS SHOW THE BREAKDOWN OF THE TRAIN AND TEST DATASETS.

Method Class HDFS BGL Thunderbird
Precision Recall Fl1 Precision Recall Fl1 Precision Recall Fl1
LogSVM Normal 0.97 0.98 095 | 0.19 0.97 0.57 | 0.23 0.95 0.36
LogSVM Anomaly | 0.94 0.51 0.66 | 0.82 0.31 0.45 | 0.92 0.37 0.53
One Class SVM Normal 0.98 0.99 0.99 | 0.94 0.92 091 | 091 0.89 0.90
One Class SVM Anomaly | 0.78 0.62 0.69 | 0.61 0.56 0.58 | 0.71 0.67 0.68
DeepLog Normal 0.93 0.87 0.89 | 0.92 0.88 0.90 | 0.90 0.99 0.94
DeepLog Anomaly | 0.66 0.35 0.46 | 0.78 0.56 0.65 | 0.82 0.76 0.79
LogBERT Normal 0.92 0.85 0.88 | 0.94 0.96 0.95 | 0.98 0.98 0.98
LogBERT Anomaly | 0.65 0.71 0.68 | 0.76 0.85 0.80 | 0.83 0.87 0.85
ContrastBERT Normal 1.0 0.93 0.96 | 0.97 0.98 0.98 | 0.99 1.0 0.99
ContrastBERT Anomaly | 0.94 1.0 0.97 | 0.96 0.96 0.96 | 0.98 0.98 0.98
Contrastive Only | Normal 0.98 0.24 0.38 | 0.97 0.35 0.51 | 0.99 0.45 0.62
Contrastive Only | Anomaly | 0.05 0.90 0.09 | 0.13 0.92 0.22 | 0.37 0.96 0.53
Contrastive SVM | Normal 0.98 0.99 0.99 | 0.97 0.98 0.98 | 0.99 0.98 0.99
Contrastive SVM | Anomaly | 0.82 0.78 0.80 | 0.85 0.67 0.75 | 0.89 0.76 0.82
TABLE II

ILLUSTRATION OF COMPARATIVE PERFORMANCE ACROSS DATASETS OF VARIOUS LOG ANOMALY DETECTION/CLASSIFICATION METHODS. ALL
METHODS EXCEPT OURS (ROW 9 ONWARD) ARE BASED ON LEARNING FROM LOG EVENT PATTERNS. THE LAST 6 ROWS SHOW RESULT OF ABLATION
STUDIES ON THE RELATIVE BENEFIT OF EACH OF THE CLASSIFIERS USED INTERNALLY IN OUR APPROACH.

class imbalance with undersampling of normals during the
contrastive encoding setup which leads to overall better per-
formance as shown in Table II.

E. Ablation studies

In order to further understand the role of each classification
within the ContrastBERT formulation, we performed ablation
studies in which we recorded the performance using the con-
trastive classifier alone, and the One-Class contrastive SVM
alone. The result is shown in Rows (11-14). As can be seen
by comparing to rows 9-10 from Table II, combining the two
classifiers led to the best performance in terms of maximizing
the recall for both classes. By optimizing on recall for normal
and abnormal and by fusion, we actually get better overall
precision as well as seen from Table II.

F. Limitations

While the language context modeling of SBERT can help
capture anomalies described by other regular expression
pattern-based methods, more complex patterns requiring com-
plex structural relationships or purely numerical measurements
may be harder to capture by our approach. The majority
of cloud logs, however, are textual in nature, making our
methods still suitable. The generalizability of our approach
across different log types still needs to be explored.

V. CONCLUSIONS

In this paper, we have presented a novel approach to
anomaly classification. By working directly with text logs, no
log parsing or custom feature extraction is needed. By using
Sentence BERT, we are able to better model the sequential
context both within and across sentences in IT logs. Using a
contrastive encoder-decoder network and classifier combina-
tion, a discriminative embedding is learned from a balanced
dataset created for the normal and abnormal logs. Finally, by
fusing the output of contrastive classifier with a One Class
SVM we are able to maximize the recall for both normal and
abnormal logs leading to better overall anomaly classification.

REFERENCES

[1] F1 score vs roc auc vs accuracy vs pr auc: Which evaluation metric
should you choose? - neptune.ai.

[2] Github - helenguohx/logbert: log anomaly detection via bert.

[3] loghub/hdfs at master - logpai/loghub - github.

[4] loghub/hdfs at master - logpai/loghub - github.

[5] sentence-transformers/paraphrase-distilroberta-base-v1 - hugging face.

[6] Watson aiops: Bringing ai to it operations management — ibm.

[7] Log-based anomaly detection with deep learning: How far are we? 2022.

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through deep learn-
ing. 2017.

[9] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly

detection via bert.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong

Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan.

Supervised Contrastive Learning. apr 2020.

K.L. Li, HK. Huang, and W. Tian S.F.and Xu. Improving one-class

svm for anomaly detection. Proceedings of the 2003 International

Conference on Machine Learning and Cybernetics, 2003.

Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo.

Failure prediction in ibm bluegene/l event logs. Proceedings - IEEE

International Conference on Data Mining, ICDM, pages 583-588, 2007.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

Jian-Guang Lou, Qiang Fu, Shengqi Yang, Jiang Li, and Bin Wu.
Mining program workflow from interleaved traces. Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2010.

Weibin Meng, Ying Liu, Yichen Zhu, Shenglin Zhang, Dan Pei, Yuqing
Liu, Yihao Chen, Ruizhi Zhang, Shimin Tao, Pei Sun, and Rong Zhou.
Loganomaly: Unsupervised detection of sequential and quantitative
anomalies in unstructured logs. 2019.

Adam Oliner and Jon Stearley. What supercomputers say: A study
of five system logs. Proceedings of the International Conference on
Dependable Systems and Networks, pages 575-584, 2007.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings
using siamese bert-networks. EMNLP-IJCNLP 2019 - 2019 Conference
on Empirical Methods in Natural Language Processing and 9th Interna-
tional Joint Conference on Natural Language Processing, Proceedings
of the Conference, pages 3982-3992, 8 2019.

Peng Su, Yifan Peng, and K Vijay-Shanker. Improving bert model using
contrastive learning for biomedical relation extraction. pages 1-10, 2021.
Z. Wang, Z. Chen, J. Ni, H. Liu, H. Chen, and J. Tang. One-class
recurrent neural networks for discrete event sequence anomaly detection.
Proc. ACM International Conference on Web Search and Data Mining
(WSDM), 2021.

Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I
Jordan. Detecting large-scale system problems by mining console logs.
Proc. ACM Symposium on Operating Systems Principles (SOSP), page
117-132, 2009.

Jieming Zhu, Shilin He, Jinyang Liu, Pinjia He, Qi Xie, Zibin Zheng,
and Michael R Lyu. Tools and benchmarks for automated log parsing.

