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Abstract  

 

In this paper we address the problem of automatic detection of dilated cardiomyopathy from cardiac 

ultrasound videos. Specifically, we present a new method of robustly locating the left ventricle by using the 

key idea that the region closest to the apex in a 4-chamber view is the left ventricular region. For this, we 

locate a region of interest containing the heart in an echocardiogram image using the bounding lines of the 

viewing sector to locate the apex of the heart. We then select low intensity regions as candidates, and find 

the low intensity region closest to the apex as the left ventricle. Finally, we refine the boundary by 

averaging the detection across the heart cycle using the successive frames of the echocardiographic video 

sequence. By extracting eigenvalues of the shape to represent the spread of the left ventricle in both length 

and width and augmenting it with pixel area, we form a small set of robust features to discriminate between 

normal and dilated left ventricles using a support vector machine classifier. Testing of the method of a 

collection of 654 patient cases from a dataset used to train echocardiographers has revealed the promise of 

this automated approach to detecting dilated cardiomyopathy in echocardiography video sequences. 

Introduction 

Dilated cardiomyopathy is a heart disease in which the left ventricle of the heart becomes very large and 

loses the ability to pump blood to the rest of the body [1]. This condition can lead to heart failure and death. 

Cardiomyopathy is diagnosed through an ultrasound recording. In this recording, an ultrasonic probe is 

moved over the heart region. Sound passes through the blood tissues and gets reflected from different parts 

of the body. These reflections are recorded as signal and converted to an image. The ultrasound device 

images the heart from different angles and depicts the chambers of the heart in views such as the apical 4-

chamber views, 2 chamber views, etc. A typical cardiac ultrasound image in apical four-chamber view 

appears as shown in Figure 1b. 

   
 

   (a)     (b) 

Figure 1. Illustration of an ultrasound image depicting the left ventricle. (a) normal left ventricle, (b) 

dilated left vetricle. 

 

In Figure 1b, the 4 chambers of the heart are seen, with the largest region being left ventricle. The shape 

and function of the left ventricle are important in characterizing the heart. Damage to the ventricle’s shape 

and structure affects the function of the heart and is often seen in several diseases such as aneurysms, 

cardiomyopathies and infarctions. The left ventricle is often enlarged and oddly-shaped in case of dilated 
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cardiomyopathy [1]. This can be seen by comparing the image of Figure 1b with a normal left ventricle 

shown in Figure 1a which has a more normal bullet-like shape.  The enlargement can be noted not only 

visually in Figure 1b, but also by mapping the pixels back to cm measurements using the calibration scale 

in the echocardiogram image. It can be seen that the left ventricle length (from apex to mitral valve) is over 

90mm which usually indicates dilated cardiomyopathy in both males and females.  

 

The goal of our work was to develop ways to automatically differentiate between normal and dilated left 

ventricles in echocardiography images. Such methods could aid in the development of computer-based 

diagnostic tools to aid clinicians in their decision making.   

 

Automatic detection of dilated cardiomyopathy from cardiac ultrasound videos, however,  is a difficult 

problem. In 4-chamber views, although the left ventricle is more clearly visible, the exact boundary of the 

left ventricle may be difficult to delineate which alters shape measurements.  Using simple thresholding 

techniques that look for low intensity regions as potential candidate regions for left ventricles may not be 

sufficient as the low intensities near the apex may cause the left ventricle region to be merged with the 

background. Although the practice guidelines indicate the single measurement of left ventricle length for 

diagnosing dilated cardiomyopathy [1], errors in  automated left ventricle boundary detection may require 

more measurements be used to provide robustness. 

 

In this paper, we present a new method of robustly locating the left ventricle by using the key idea that the 

region closest to the apex in a 4-chamber view is the left ventricular region. For this, we (a) locate a region 

of interest (ROI) containing the heart in an echocardiogram image using the bounding lines of the viewing 

sector to locate the apex of the heart, (b) select low intensity regions as candidates, and (c) find the low 

intensity region closest to the apex as the left ventricle, and finally (d) refine the boundary by averaging the 

detection across the heart cycle using the successive frames of the echocardiographic video sequence. We 

then extract the eigenvalues of the shape to represent the spread of the left ventricle in both length and 

width and augment it with pixel area to form a small set of robust features. A set of 4-chamber view 

echocardiogram study videos are used for training a support vector machine classifier [3] using disease 

labels obtained from their corresponding reports. The machine learns the separation between normal and 

abnormal classes based on the provided features and their labels. New 4-chamber echocardiogram videos 

are then processed similarly to isolate shape feature vectors, and then classified into dilated left ventricle 

class or normal class using the learned support vector machine. The method has been tested on a collection 

of 654 patient cases from a dataset used to train echocardiographers.  

 

Related work: 
 
Automatic detection of diseases from echocardiography videos, however, has not been widely addressed. 

Most of the attention has been paid to valvular diseases from Doppler imaging [13], or measuring 

hypokinesia (reduced heart motion) and wall thickness in echocardiography videos [10]. Recently, work 

has been reported on the detection of differences between normal and abnormal left ventricular shapes in 

echocardiography videos using a modeling approach[12]. Our approach focuses on the detection of dilated 

cardiomyopathy condition, which to our knowledge has not been investigated earlier by other automated 

methods.  

 
In medical imaging community, the left ventricular (LV) shape itself has been well-studied primarily for 

the purpose of segmenting the left ventricle in echocardiography images.  A variety of techniques including 

active shape and appearance models [3, 4, 5], snakes and active contours [6,8], parametric shape 

descriptors of endocardial contours[8], deformable models and templates [6], and level set techniques are 

available. Model-based approaches such as active shape models are difficult to learn from a class of shapes 

as they need manual marker identification as well as prior registration of shapes during model training.  

Our experimentation also revealed that many region-based approaches over or under-segment the left 

ventricle, particularly, in diseased cases, resulting in inaccurate boundaries for shape characterization. We 

also experimented with an active shape model approach to localize LV as described in [10] but found it 

could locate the left ventricle accurately in only 35% of the cases of 4-chamber views. As a result, we 

implemented a new bottom-up approach to LV detection. Our approach consists of 4 major processing 
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stages, namely, (a) ROI identification, (b) LV candidate region generation, (c) LV region selection using 

apex, (d) LV region refinement using spatio-temporal information. Each of these processing steps are 

explained below. 

 

 

Identifying the region of interest and apex: 
 

The ultrasound scan sector in the image is usually bounded by dominant lines which can be highlighted 

using an edge detector, such as the Canny edge detector [14]. Figure 2b shows the edge image generated 

for the original image of Figure 2a. The popular way to detect strong lines is through the Hough transform 

[15] which detects the pixels that fall on a line in polar coordinate system by converting lines to points in 

the Hough space of (r,d) where r is the distance of a point (x,y) from the origin and d is the angle of the 

vector from origin to the point (x,y).  

 
   (a)      (b) 

Figure 2. (a) Original image. (b) Edge image showing the potential bounding lines of the sector or 

region of interest. Image source: 123sonography.com 

 

By recording the lines passing through all edge pixels in various orientations, we get the Hough image as 

shown in Figure 3b. Here the dominant edges seen in the edge image are noted as bright spots in the Hough 

transform corresponding to the number of pixels that voted for the line, with longer lines getting more votes 

than short line segments. Of these, the bright spots that are on a horizontal line indicate lines of the same 

radius and could be potential bounding lines of the sector. Further, if the angle between them as seen by the 

horizontal separation between the bright spots is within a reasonable angle for a viewing sector (80 to 120 

degrees), then they are very likely to be the bounding lines of the sector. 

 

            
                (a)                            (b) 

Figure 3. Illustration of Hough transform. (a) Edge image. (b) Hough transform rendered as an 

image. The horizontal axis in (b) is the angle, and the vertical axis is the radius in the polar 

coordinate system. 
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Our method exploits this observation to analyze the bright spots in the Hough transform image and project 

them back as bounding lines in the edge image. Verification with the pixels underneath further establishes 

the bounding lines of the sector. Once the bounding lines are found, the point of intersection can be easily 

located. Figure 3a shows the point of intersection found in the edge image by a green dot. This is our best 

estimate of the apex of the heart as well based on the visible content in the sector. 

 

Identifying candidate left ventricle regions: 
 
Since the left ventricle in the 4-chamber views is usually a darker region, we analyze the histogram of the 

image and separate it into intensity levels to pick relatively low intensity regions. Specifically, we use the 

multi-level Otsu thresholding method [9] to divide the histogram into 5 intensity levels capturing the 5 

ranges of intensities typically seen in echocardiogram images. Of these the second lowest intensity level is 

used to threshold the original image into two classes. Choosing the second lowest ensures that we also 

capture cases where due to noise in imaging and phase in the heart cycle, the left ventricular region appears 

brighter than usual. The region within the bounding lines is then retained in the thresholded image to yield 

the image shown in Figure 4b. As can be seen, the potential merging of left ventricular region with the 

background is avoided due to the prior detection of region of interest.  

 

           

   (a)      (b) 

Figure 4: Illustration of candidate region generation within the bounding sector. (a) Original image. 

(b) Candidate low intensity regions within the region of interest. 

 

Identifying the left ventricle: 

We then use a connected component grouping algorithm to collect all bright pixels in the thresholded 

image to form candidate regions. Using the observation that the left ventricle is the closest chamber to the 

apex in a 4-chamber view image on the right, we obtain the distance of the centroid of each region to the 

point of intersection previously identified during the region of interest localization, and retain the closest 

rightmost region as our choice for left ventricle.  

Depending on the time in the heart cycle where the echocardiogram image is taken, the left ventricular 

region may be merged with the left atrium (when the mitral valve is open). This can cause the left 

ventricular region size to be overestimated. In the next step, we integrate information across successive 

frames in the video to more precisely localize the boundaries of the left ventricle. 

Integrating time-varying information: 

We process each successive frame of the echocardiography video sequence and extract the left ventricle. 

The left ventricular shape is best segmented in the end-diastoli position just after the closure of the mitral 

valve. By tracking the size of the delineated left ventricle through the heart cycle, we pick the end-diastoli 
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frame as the one with the smallest size region indicated for the left ventricle. When multiple heart cycles 

are present  in the echocardiography sequence, we average the detected size of the left ventricle across all 

such end-diastoli frames. Finally, we remove small holes within the LV region to form smoothly filled left 

ventricle region as shown in Figure 5. In this figure, Figure 5a shows a left ventricle detected among the 

regions of Figure 4b. Figure 5b shows the result of averaging the detection in the end-diastoli frames over 

the heart cycles found in the echocardiogram video sequence. 

      

(a) (b) 

Figure 5. Illustration of LV region detection. (a) Raw region from a single image. (b) average region 

from end-diastoli frames within the echocardiography video sequence. 

 

Extracting shape features: 

Once the LV region is identified, we extract shape features by using the eigenvalues of the 2D shape. 

Although the practice guidelines for dilated cardiomyopathy recommend measuring the length of the left 

ventricle from the apex to the mitral value, we adopted the eigenvalues over the exact extremal point-based 

length measurements in order to provide robustness to boundary localization errors in the left ventricular 

region. This can also be seen in Figure 5b where the apex region is included in the left ventricle region 

identification and would alter shape measurements based on the extremal points. Using the ratio of the two 

largest eigenvalues of the shape, we get a more robust estimation of the spread of the left ventricle in both 

length and width. Finally, to avoid overestimation of the area in the case of nonconvex shapes of the left 

ventricle (which can happen in other diseases such as aneurysms), we add a third shape feature based on the 

pixel area of the left ventricle.  

Extracting scale: 

The above measurements of shape features must be normalized for zoom effects found in the 

echocardiography images (when echocardiographers zoom into the regions of interest). The calibration 

markers found on the region of interest can help identify the scale. The scale difference can be seen in 

Figures 1a and 1b for the echocardiogram images of two patients from the respective calibration markers 

shown. In our approach, we detect the number unit markings on the calibration scale using the method 

described in [12] that is based on an optical character recognition (OCR) algorithm called Tesseract [16].  

Using the recognized units, the distance between markers is then converted to pixel coordinates to mm 

ranges as described in [12]. The resulting shape features are thus normalized and presented for 

discrimination based on actual physical dimensions rather than the sizes in pixels. 

Discriminating between normal and dilated left ventricles: 

Given a set of labeled training videos depicting normal and dilated left ventricles, we locate the left 

ventricle as described above and extract the normalized shape feature vectors.  We then find the separation 

between normal and dilated left ventricle using the Support Vector Machine (SVM) framework. An SVM 

is a classifier that, when used with two classes, tries to find a boundary in the data space such that the two 

classes are separated by the maximum possible margin. Given a set of training data which is composed of a 

set of vectors and their labels, SVM tries to find the parameters of this maximum margin boundary. This 

869



  

boundary can be thought of as a high dimensional line, which is characterized by a set of weights (α). Since 

the objective of this work is to discriminate between normal and dilated LV, we build a single SVM model 

in which the positive examples (+1 labels) are dilated cases and normal cases are the negative examples (-1 

labels).  

Given a new test echocardiogram video, we proceed as before to extract the left ventricle region and 

normalized shape features. The trained SVM model is then used to predict the label for the test case as 

normal or dilated left ventricle indicating dilated cardiomyopathy.   

 

Results: 

 

We evaluated the validity of this approach on an echocardiogram dataset made available from 

123sonography.com. This is an educational site for training echocardiographers in the interpretation of 

echocardiograms. Each video sequence is labeled with the observed condition in the video by their clinical 

experts. The dataset has over 2000 videos. After automatically analyzing the reports for textual phrases 

indicating normal or diseased left ventricle, we isolated cases of normal and dilated left ventricles. Figure 6 

shows an extract of a report from which the deduction of dilated left ventricles was made and added as a 

positive example label for the corresponding echocardiography sequence. Raw textual analysis was 

followed up by manual verification before retaining the labels as ground truth labels. From the 2000 cases, 

we found about 254 cases of dilated cardiomyopathy and 400 normal cases. We then analyzed all the 

selected video sequences to locate the left ventricle and selected 124 cases as training data which had 

accurate detection of the left ventricle and used their shape feature vectors for training data. Of these there 

were 52 normals and 72 dilated cardiomyopathy cases. The trained support vector machine was then used 

to classify the rest of the data.  

 

4261 Image view: 4 chamber view 

4261 Left Ventricle: lv hypertrophy: normal | lv function: 

reduced moderate to severe | lv size: dilated 

4261 Wall motion / CAD: akinesia apical 

4261 Right Ventricle: normal rv 

4261 Atria + IAS: la normal | ra normal 

4261 Mitral Valve: annular caclification 

4261 Prosthesis: tv normal / prosthesis – normal 

 

Figure 6.  Extract of an echocardiogram report with the first column indicating the number of the 

corresponding echocardiography study. 

 

Since all data tested already has a ground truth disease label of dilated cardiomyopathy or normal, the 

classification accuracy was evaluated as follows.  Let F= (f1,f2,…fM) denote the dilated cardiomyopathy 

videos identified by the classifier. Let G= (g1,g2,…gN) denote the dilated cardiomyopathy cases identified 

in the ground for the same video. Then the classification accuracy per class is defined as 
||

||

G

F
 . The 

overall accuracy is averaged over the test samples of the two classes.  

 

Training 

normals 

Training 

dilated LV 

Test normals Test dilated 

LV 

Total correct 

detections 

Total false 

detections 

Overall 

accuracy % 

52 72 348 182 412 117 77.8 

Table 1. Illustration of normal versus dilated LV classification accuracy by SVM. 
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ROI 

detection 

accuracy% 

LV region 

selection 

accuracy % 

LV size 

estimation 

accuracy % 

92.5 89.3 87.2 

Table 2. Illustration of performance of the image processing modules  

 

The results of the evaluation are shown in Table 1. The average classification accuracy is currently at 

77.8% across all the test sequences. The overall classification accuracy is affected by (a) accuracy of region 

of interest (ROI) localization, (b) Left ventricle detection, (c) left ventricle region size and boundary 

estimation besides SVM classifier accuracy reported in Table 1. The relative contribution of each of these 

was measured by visually inspecting the images produced in each step of the process for each of the test 

video sequences. The results are summarized in Table 2. As can be seen, many of these steps have good 

accuracy but due to the cumulative errors from their application in sequence, the overall accuracy reduces 

to 77.8%. As the first approach to attempt this problem, we believe these results are promising and 

encourage further research in this area. 

Conclusions: 

In this paper, we have addressed, for the first time, the problem of automatically detecting dilated 

cardiomyopathy from cardiac ultrasound videos. A robust left ventricle detector was proposed and shape 

features extracted and fed to machine learning framework based on support vector machines to separate 

normal from dilated left ventricles. The performance of the classification shows the promise of the method 

towards developing a reliable decision support tool in future.  
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